
(c) 1998-2013 CyberWeb Consulting.
All rights reserved.

What is Python?
An Introduction

"Perl is worse than Python because people wanted it worse."
-- Larry Wall (14 Oct 1998 15:46:10 -0700, Perl Users mailing list)

"Life is better without braces."
-- Bruce Eckel, author of Thinking in C++ , Thinking in Java

"Python is an excellent language[, and makes] sensible compromises."
-- Peter Norvig (Google), author of Artificial Intelligence

+Wesley Chun, Principal
CyberWeb Consulting
wescpy@gmail.com :: @wescpy

cyberwebconsulting.com
goo.gl/P7yzDi

(c) 1998-2013 CyberWeb Consulting.
All rights reserved.

Python
is

Fun!
(I've used it at lots of places!)

(c) 1998-2013 CyberWeb Consulting.
All rights reserved.

(c) 1998-2013 CyberWeb Consulting.
All rights reserved.

I'm here to give
you an idea of

what it is!
(I've written a lot about it!)

(c) 1998-2013 CyberWeb Consulting.
All rights reserved.

(c) 1998-2013 CyberWeb Consulting.
All rights reserved.

I've taught it at
lots of places!

(companies, schools, etc.)

(c) 1998-2013 CyberWeb Consulting.
All rights reserved.

(c) 1998-2013 CyberWeb Consulting.
All rights reserved.

About You
Hopefully familiar

with one other high-
level language:

Java
C, C++, C#
PHP, JavaScript
(Visual) Basic
Perl, Tcl, Lisp
Ruby, etc.

Django, TurboGears/Pylons, Pyramid, Plone, Trac, Mailman, App Engine

SW/HW Engineer/Lead
Sys Admin/IS/IT/Ops
Web/Flash Developer
QA/Testing/Automation
Scientist/Mathematician
Toolsmith, Hobbyist
Release Engineer/SCM
Artist/Designer/UE/UI/UX
Student/Teacher

(c) 1998-2013 CyberWeb Consulting.
All rights reserved.

Why are you here? You…
Have heard good word-of-mouth
Came via Django, App Engine, Plone, etc.
Discovered Google, Yahoo!, et al. use it
Already know but want formal training
Were forced by your boss

Safari Books Online: Top 5, Apr 2009
1. iPhone
2. Java
3. Python
4. C#
5. PHP

(c) 1998-2013 CyberWeb Consulting.
All rights reserved.

source: TIOBE Programming Community Index for April 2009 (tiobe.com)

(c) 1998-2013 CyberWeb Consulting.
All rights reserved.

For New Programmers
Programming should be easy enough
to teach like reading & writing (CP4E)

Young kids: start with Scratch/Tynker
Can start with Python: age ~10 & older
Skills you need

Some math background
Algebra, physics (problem solving)

Buddy who already is a developer
Even better if they know Python

Tinkerer, curious, itch-scratcher

(c) 1998-2013 CyberWeb Consulting.
All rights reserved.

About this Talk
Goal: Introduce as much Python as one can in 30 or 60 mins

Seminar Topics
Language Introduction
Python Object Types
Loops and Conditionals
Files, Functions, Modules
Object-Oriented Programming
Errors and Exception Handling
Miscellaneous

(c) 1998-2013 CyberWeb Consulting.
All rights reserved.

Background
Guido van Rossum: began late '89, released early '91

Inherits from ABC, Modula, C/C++, LISP, ALGOL, Perl, Java, etc.
Named after Monty Python, not the snake ☺

Cross-platform (Mac, PC, *ix; only need a C compiler)
Alternate implementations: Jython, IronPython, PyPy, Stackless, etc.

Philosophy, Concepts and Syntax
Robust Enough "batteries included" to get job done
Simple Clean, easy-to-read, easier than VB?!?
Modular Plug-n-play, use only what you need
Extensible Can extend language to meet your needs
Intuitive "Python fits your brain."
OOP Object-oriented when you need it (not req'd)
"Pythonic" "There's only one way to do it…."

(c) 1998-2013 CyberWeb Consulting.
All rights reserved.

Why (not) Python?
Advantages

Simple Syntax
Rapid Development
High-level data structures
Object-Oriented
Exception Handling
Functional Programming
Memory Management
Extensible (C/C++/Java)
Many libraries: NW, DB,
GUI, MT, XML, RE, OS/FS,
Math, Web; plus 3rd-party
Grassroots community

Disadvantages
Generally slower than
compiled languages
Idiosyncratic idioms
Obscure syntax? Naaah!!
No marketing force…
mostly word-of-mouth
No world domination…
yet! (Happening slowly.)

www.tiobe.com/index.php/
content/paperinfo/tpci

(c) 1998-2013 CyberWeb Consulting.
All rights reserved.

Built for Non-Programmers
Educational language syntax

Works well for school-aged children
Syntax, memory management, data

structures, object-oriented programming…
such issues get in way of learning concepts

C++ and Java deter interest and students
Python: retention, morale, understanding
Probably the "best" 1st language

Imagine what it means for seasoned
programming professionals?

(c) 1998-2013 CyberWeb Consulting.
All rights reserved.

Some Newbie Resources
Published Books

Hello World! Computer Programming for Kids & Other Beginners
(Sande, Sande: 2009)

Invent Your Own Computer Games with Python (Sweigart: 2010)
Python Programming for the Absolute Beginner (Dawson: 2010)
Learning with Python: How to Think Like a Computer Scientist

(Downey, Elkner, Meyers: 2002)
Learn Python the Hard Way (Shaw, 2010)

Online Books, Tutorials, Environments, etc.
How to Think Like a Computer Scientist (Downey, Elkner, Meyers)
Learning to Program (Gauld)
LiveWires Python course
A Byte of Python (Swaroop)
Instant Hacking: Learning to Program with Python (Hetland)
Snake Wrangling for Kids (Briggs)
Computer Programming is Fun! (Handy)
Karel the Robot clones: Guido van Robot, RUR-PLE

(c) 1998-2013 CyberWeb Consulting.
All rights reserved.

Interactive Interpreter
Running Python's interpreter from the default IDE: IDLE

Starting from the cmd-line; can also run scripts (.py extension)
$ python # or C:\> python
Python 2.6.2 (r262:71600, May 12 2009, 23:46:27)
[GCC 4.0.1 (Apple Inc. build 5465)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>
>>> print 'Hello World!'
Hello World!

(c) 1998-2013 CyberWeb Consulting.
All rights reserved.

What You Just Saw
>>> ← this is the Python prompt

Enter any Python command after it
Use print to display output to users

Use print() in Python 3

To exit interactive interpreter
Ctrl-D from IDLE or *ix command-line
Ctrl-Z from a DOS/command shell

Integrated Development Environment: developer tools

Interactive interpreter: testing, debugging, hacking,
experimenting regardless of IDE use or otherwise

(c) 1998-2013 CyberWeb Consulting.
All rights reserved.

Getting Python on your Computer
Unix (Linux, Mac OS): already installed
PCs, source, and other downloads

python.org or corepython.com

Other IDEs
SPE (pictured) pythonide.stani.be
PythonWin sf.net/projects/pywin32
Eclipse + PyDev eclipse.org & pydev.sf.net

Komodo activestate.com/komodo
WingIDE wingware.com
PyCharm jetbrains.com/pycharm

(c) 1998-2013 CyberWeb Consulting.
All rights reserved.

Common Beginner Gotchas
Code delimited by indentation not braces { }
if x > 10:

return "'x' is greater than 10"
else:

return "'x' is less than 10"
Similarly, no extraneous characters (; , $, …)

No switch-case, private class members, ++/--,
static type checking, anonymous blocks, etc.

True division: 1/2 == 0.5 (not 0)
Freaky-looking floats: 1.1 → 1.10000000001
Single element tuple needs comma: (None,)

(c) 1998-2013 CyberWeb Consulting.
All rights reserved.

Objects

Standard Types
Numbers (3-8)
Strings (2-3)
Lists
Tuples
Dictionaries
Sets (2)

Other Types
None
Files
Functions/Methods
Modules
Type/Classes
miscellaneous

Allocated on assignment: Dynamic/Duck Typing
Additional refs (aka aliases) similar to pointers
Call by Reference, Call by Value? Neither. Both.
Memory Management: Reference Counting

(c) 1998-2013 CyberWeb Consulting.
All rights reserved.

Variables and Expressions
>>> 4 + 6 * 5 # math ops like other langs
34
>>> a = 4 + 6 ** 2 # no declaration needed
>>> a
40
>>> a = 'Python' # auto garbage collection
>>> b = 'is cool'
>>> a + b # ops can be overloaded
'Pythonis cool'
>>> a = a + ' ' + b # reassignment no problem
>>> a
'Python is cool'
>>> # useful interactive tool

(c) 1998-2013 CyberWeb Consulting.
All rights reserved.

Numbers
Integers (no size limit except for VM)

-680, 0o237, 0xDEADBEEF, 64-0x41, 0b110

Floating point real numbers (IEEE-754 C double)
-97.65, -3.14159, -6e2, 0.1

Complex numbers
Composed of real and imaginary parts (floats)
11.65-5.55J, 4J, -3e2+8.73J, 0.1-2.3e4J

Also long, bool, Decimal, Fraction, Rational, etc.
Other modules: math, cmath, random, operator

(c) 1998-2013 CyberWeb Consulting.
All rights reserved.

Standard Operators
+ - * / // % **
<< >> & | ^ ~
== >= <= < > !=
is is not and or not

•Grouping expressions in () okay as usual
•** means exponentiation, % means modulus/remainder

•/ means true division in 3.x and classic division in 2.x
•Use // for standard integer floor division

•Assignment using single equals (=)
•Augmented assignment +=, -=, *=, etc. (no ++ though)

(c) 1998-2013 CyberWeb Consulting.
All rights reserved.

Strings ' ' " " ''' '''
Strings are sequences of characters (single/double quotes)
Format operator (%) for printf()-like functionality
Triple quotes allow special characters like newlines

>>> s = 'Python'
>>> s * 2
'PythonPython'
>>> s = s * 2
>>> s
'PythonPython'
>>> s[4:6]
'on'
>>> s[-1]
'n'
>>> s[-4:-1]
'tho'
>>> s[:6]
'Python'

>>> '%s is number %d' % (s[:6], 1)
'Python is number 1'
>>> s = s[:6] + ' is cool'
>>> s
'Python is cool'
>>>
>>> hi = '''hi
there'''
>>> hi
'hi\nthere'
>>> print hi
hi
there

(c) 1998-2013 CyberWeb Consulting.
All rights reserved.

Lists [] and Tuples ()
Lists are ordered sequences of arbitrary objects
Mutable (values can be updated)
Can have lists of lists, i.e., multidimensional indexing
Tuples similar but immutable (no value updates allowed)
"List comprehensions" allows for quick logical building of lists

Common list methods:
list.sort() # "sort" list contents in-place
list.reverse() # reverse a list in-place
list.append() # append item to list
list.remove/pop() # remove item(s) from list
list.extend() # extend a list with another one
list.count() # return number of item occurrences
list.index() # lowest index where item is found
list.insert() # insert items in list

(c) 1998-2013 CyberWeb Consulting.
All rights reserved.

List Operations
>>> m = ['Core', 'Programming', 9, 2006]
>>> m.append('Prentice Hall')
>>> m.insert(1, 'Pytho')
>>> m
['Core', 'Pytho', 'Programming', 9, 2006, 'Prentice Hall']
>>> m[1] = 'Python'
>>> m.pop(3)
9
>>> m
['Core', 'Python', 'Programming', 2006, 'Prentice Hall']
>>> m.sort()
>>> m
[2006, 'Core', 'Prentice Hall', 'Programming', 'Python']

>>> [i*3 for i in range(20) if i % 2 == 0]
[0, 6, 12, 18, 24, 30, 36, 42, 48, 54]
>>> f = open('myFile', 'r')
>>> data = [line.strip() for line in f]
>>> f.close()

(c) 1998-2013 CyberWeb Consulting.
All rights reserved.

Dictionaries { }
Dictionaries are Python's only mapping type

Mutable, resizable hash tables
Mappings of keys to values

Keys are scalar (usually strings or numbers)
Values are arbitrary Python objects
No key collisions allowed
Similar to Java HashMaps and Perl hashes/associative arrays
Common dictionary methods:

d.keys() # iterable: keys of d
d.values() # iterable: values of d
d.items() # list of key-value pairs
d.get() # return key's value (or default)
d.pop() # remove item from d and return
d.update() # merge contents from another dict

(c) 1998-2013 CyberWeb Consulting.
All rights reserved.

Dictionary Operations
>>> d = {'title': 'Core Python Programming', 'year': 2007}
>>> d
{'year': 2007, 'title': 'Core Python Programming'}
>>> 'year' in d
True
>>> 'pub' in d
False
>>> d.get('pub', 'N/A') # KeyError if d['pub']
'N/A'
>>> d['pub'] = 'Prentice Hall'
>>> d.get('pub', 'N/A') # no KeyError for d['pub'] now
'Prentice Hall'
>>> for eachKey in d:

print eachKey, ':', d[eachKey]

year : 2007
pub : Prentice Hall
title : Core Python Programming

(c) 1998-2013 CyberWeb Consulting.
All rights reserved.

if-elif-else Statements
Conditional statements are what you expect

prompt, get, and check user input
data = raw_input("Enter 'y' or 'n': ").lower()

if data[0] == 'y':
print "You typed 'y'." # 'y' key

elif data[0] == 'n':
print "You typed 'n'." # 'n' key

else:
print 'invalid key!' # other key

Ternary Operator (aka Conditional Expressions: C ? T : F)

smaller = x if x < y else y # T if C else F

(c) 1998-2013 CyberWeb Consulting.
All rights reserved.

Loops
Python has while and for loops – while loops are "normal"
for loops more like shell foreach

Iterate over a sequence rather than as a conditional
range() was created to "simulate" a traditional for

aList = [123, 'xyz', 45.67]
>>> for eachItem in aList:
... print eachItem
123
xyz
45.67

>>> for i in range(0, 3): # [0, 1, 2]
... print i
0
1
2

>>> i = 0
>>> while i < 3:
... print i
... i += 1
0
1
2

(c) 1998-2013 CyberWeb Consulting.
All rights reserved.

Open a file and get back a file object

f = open(file_name, access_mode)

Most commonly-used file methods
f.close() Close file
f.read() Read bytes from file
f.readlines() Read all lines into an iterable
f.write() Write a string to file

Example of displaying a text file to the screen

Files

fp = open('data.txt', 'r') # open file, get file object
for eachLine in fp: # display one line at a time

print eachLine,
fp.close() # close file

(c) 1998-2013 CyberWeb Consulting.
All rights reserved.

Functions
Function declarations created with def statement
Support for default and variable-length arguments
Support for variety of invocation styles

def foo(x): # create foo()
print 'Hello %s!' % x

>>> foo('Guido') # call foo()
Hello Guido!

Functional Programming elements:
List comprehensions and generator expressions
Currying and partial function application
Statically-nested: Inner functions and closures
Anonymous Functions (lambda)

(c) 1998-2013 CyberWeb Consulting.
All rights reserved.

Importing Modules & Attributes
Importing a module using import statement
import module_name

import string
num = string.atoi('123')

Importing module attributes using from-import statement
Names brought into local namespace

from module_name import module_element

from string import atoi
num = atoi('123')

Packages: allow for organizing modules using the file system

(c) 1998-2013 CyberWeb Consulting.
All rights reserved.

Standard Library Sampler (“B.I.”)

API for SQLite databasessqlite3

Email/MIME construction and parsing packageemail

External process managementsubprocess

Data compression and archive filesgzip, bz2, zipfile, tarfile

Various Internet client libraries{ftp,pop,url,http,smtp,*}lib

Serialize Python objectspickle, cPickle, shelve

SAX parsing, DOM tree mgmt, ElementTree APIxml.sax, xml.dom, xml.etree

Various math/numeric processing{c,}math, random, fractions,…

High-level multithreading, multiprocessingthreading, multiprocessing

Python/Tk GUI toolkit interfaceTkinter

Socket interface & server classes (TCP, UDP)socket, SocketServer

Date and time constants and functionstime, datetime, calendar

Regex, JSON, and CSV text processingre, json, csv

Operating and file system interfaceos and os.path

System data, processing, and functionalitysys

DescriptionModule Name(s)

(c) 1998-2013 CyberWeb Consulting.
All rights reserved.

Object-Oriented Programming
"Constructor"/Initializer is __init__(), "self" is "this"
Class instantiation via function interface (rather than "new")
Instance attrs, multiple inheritance; no overloading nor private

class MyClass(object):
... def __init__(self, data=2):
... self.info = data
... def times(self, x):
... return "%d * %d is %d" % (
... self.info, x, self.info * x)
>>>
>>> inst = MyClass(21)
>>> inst.info
21
>>> print inst.times(3)
21 * 3 is 63

(c) 1998-2013 CyberWeb Consulting.
All rights reserved.

Exceptions and try-except
Exception handling via try-except statement

try:
statements to monitor

except (ErrorType1, ErrorType2,…) as e:
code to exec if exception occurs

try:
fp = open('data.txt', 'r')

except IOError as e:
print 'file open error:', e
return False

Throw exceptions with raise; there is also a finally

(c) 1998-2013 CyberWeb Consulting.
All rights reserved.

Programmer Tools
Debugger

pdb

Profilers
profile
hotshot
cProfile

Tracer/Tracker
trace

Logger
logging

Timer
timeit

Help/Documentation
pydoc

Testing
unittest
doctest
(external) nose
(external) py.test
Testing tools taxonomy
goo.gl/Fpz0Z

(c) 1998-2013 CyberWeb Consulting.
All rights reserved.

Python 2 vs. Python 3
The What and the Why

Fix early design flaws
Some new features, many small improvements
Plan: develop (remainder of) 2.x and 3.x together
Provide transition tools (2to3, 2.6+)

Key Updates (no major syntax changes)
print, exec changed to functions
True division: 1/2 == 0.5
Performance enhancements (more iterators)
Type consolidation (integers, classes, obj comps)
Strings: Unicode default; bytes/bytearray types

Python 3 article on InformIT
http://www.informit.com/articles/article.aspx?p=1328795

(c) 1998-2013 CyberWeb Consulting.
All rights reserved.

 Additional Resources
Published Books

Quick Python Book (Ceder, 2010)
Core Python Programming (Chun, 2006/2009)
Python Fundamentals LiveLessons DVD (Chun, 2009)
Beginning Python (Hetland, 2008)
Dive into Python (Pilgrim, 2009)

Python Standard Library by Example (Hellmann, 2011)
Python Essential Reference (Beazley, 2009)
Python in a Nutshell (Martelli, 2006)
Python Cookbook (2005 [2.x] & 2013 [3.x])

Other Resources
Python Reading List(s) goo.gl/i4u0R
Python Quick Reference Guide rgruet.free.fr#QuickRef
Worldwide Python Conferences www.pycon.org
Core Python site & blog corepython.com & wescpy.blogspot.com
comp.lang.python newsgroup groups.google.com
PyPI/Cheeseshop repository python.org/pypi

(c) 1998-2013 CyberWeb Consulting.
All rights reserved.

1. Beautiful is better than ugly.
2. Explicit is better than implicit.
3. Simple is better than complex.
4. Complex is better than complicated.
5. Flat is better than nested.
6. Sparse is better than dense.
7. Readability counts.
8. Special cases aren't special enough to break the rules.
9. Although practicality beats purity.
10. Errors should never pass silently.
11. Unless explicitly silenced.
12. In the face of ambiguity, refuse the temptation to guess.
13. There should be one — and preferably only one — obvious way to do it.
14. Although that way may not be obvious at first unless you're Dutch.
15. Now is better than never.
16. Although never is often better than right now.
17. If the implementation is hard to explain, it's a bad idea.
18. If the implementation is easy to explain, it may be a good idea.
19. Namespaces are one honking great idea — let's do more of those!

The Zen of Python (or import this by Tim Peters)

(c) 1998-2013 CyberWeb Consulting.
All rights reserved.

Thank you!

Q&A
+Wesley Chun (plus.ly/wescpy)
@wescpy (twitter.com/wescpy)

wescpy@gmail.com
cyberwebconsulting.com

corepython.com
wescpy.blogspot.com

