
(c) 1998-2013 CyberWeb Consulting.
All rights reserved.

What is Python?
An Introduction

"Perl is worse than Python because people wanted it worse."
-- Larry Wall (14 Oct 1998 15:46:10 -0700, Perl Users mailing list)

"Life is better without braces."
-- Bruce Eckel, author of Thinking in C++ , Thinking in Java

"Python is an excellent language[, and makes] sensible compromises."
-- Peter Norvig (Google), author of Artificial Intelligence

+Wesley Chun, Principal
CyberWeb Consulting
wescpy@gmail.com :: @wescpy

cyberwebconsulting.com
goo.gl/P7yzDi

(c) 1998-2013 CyberWeb Consulting.
All rights reserved.

Python
is

Fun!
(I've used it at lots of places!)

(c) 1998-2013 CyberWeb Consulting.
All rights reserved.

(c) 1998-2013 CyberWeb Consulting.
All rights reserved.

I'm here to give
you an idea of

what it is!
(I've written a lot about it!)

(c) 1998-2013 CyberWeb Consulting.
All rights reserved.

(c) 1998-2013 CyberWeb Consulting.
All rights reserved.

I've taught it at
lots of places!

(companies, schools, etc.)

(c) 1998-2013 CyberWeb Consulting.
All rights reserved.

(c) 1998-2013 CyberWeb Consulting.
All rights reserved.

About You
zHopefully familiar
with one other high-
level language:
zJava
zC, C++, C#
zPHP, JavaScript
z(Visual) Basic
zPerl, Tcl, Lisp
zRuby, etc.

zDjango, TurboGears/Pylons, Pyramid, Plone, Trac, Mailman, App Engine

zSW/HW Engineer/Lead
zSys Admin/IS/IT/Ops
zWeb/Flash Developer
zQA/Testing/Automation
zScientist/Mathematician
zToolsmith, Hobbyist
zRelease Engineer/SCM
zArtist/Designer/UE/UI/UX
zStudent/Teacher

(c) 1998-2013 CyberWeb Consulting.
All rights reserved.

Why are you here? You…
z Have heard good word-of-mouth
z Came via Django, App Engine, Plone, etc.
z Discovered Google, Yahoo!, et al. use it
z Already know but want formal training
z Were forced by your boss

z Safari Books Online: Top 5, Apr 2009
1. iPhone
2. Java
3. Python
4. C#
5. PHP

(c) 1998-2013 CyberWeb Consulting.
All rights reserved.

source: TIOBE Programming Community Index for April 2009 (tiobe.com)

(c) 1998-2013 CyberWeb Consulting.
All rights reserved.

For New Programmers
zProgramming should be easy enough

to teach like reading & writing (CP4E)
zYoung kids: start with Scratch/Tynker
zCan start with Python: age ~10 & older
zSkills you need
zSome math background
zAlgebra, physics (problem solving)

zBuddy who already is a developer
zEven better if they know Python

zTinkerer, curious, itch-scratcher

(c) 1998-2013 CyberWeb Consulting.
All rights reserved.

About this Talk
zGoal: Introduce as much Python as one can in 30 or 60 mins

zSeminar Topics
zLanguage Introduction
zPython Object Types
zLoops and Conditionals
zFiles, Functions, Modules
zObject-Oriented Programming
zErrors and Exception Handling
zMiscellaneous

(c) 1998-2013 CyberWeb Consulting.
All rights reserved.

Background
zGuido van Rossum: began late '89, released early '91
zInherits from ABC, Modula, C/C++, LISP, ALGOL, Perl, Java, etc.
zNamed after Monty Python, not the snake ☺

zCross-platform (Mac, PC, *ix; only need a C compiler)
zAlternate implementations: Jython, IronPython, PyPy, Stackless, etc.

zPhilosophy, Concepts and Syntax
zRobust Enough "batteries included" to get job done
zSimple Clean, easy-to-read, easier than VB?!?
zModular Plug-n-play, use only what you need
zExtensible Can extend language to meet your needs
zIntuitive "Python fits your brain."
zOOP Object-oriented when you need it (not req'd)
z"Pythonic" "There's only one way to do it…."

(c) 1998-2013 CyberWeb Consulting.
All rights reserved.

Why (not) Python?
zAdvantages
ÎSimple Syntax
ÎRapid Development
ÎHigh-level data structures
ÎObject-Oriented
ÎException Handling
ÎFunctional Programming
ÎMemory Management
ÎExtensible (C/C++/Java)
ÎMany libraries: NW, DB,

GUI, MT, XML, RE, OS/FS,
Math, Web; plus 3rd-party

ÎGrassroots community

zDisadvantages
ÎGenerally slower than

compiled languages
ÎIdiosyncratic idioms
ÎObscure syntax? Naaah!!
ÎNo marketing force…

mostly word-of-mouth
ÎNo world domination…

yet! (Happening slowly.)

www.tiobe.com/index.php/
content/paperinfo/tpci

(c) 1998-2013 CyberWeb Consulting.
All rights reserved.

Built for Non-Programmers
zEducational language syntax

zWorks well for school-aged children
zSyntax, memory management, data

structures, object-oriented programming…
such issues get in way of learning concepts

zC++ and Java deter interest and students
zPython: retention, morale, understanding
zProbably the "best" 1st language

zImagine what it means for seasoned
programming professionals?

(c) 1998-2013 CyberWeb Consulting.
All rights reserved.

Some Newbie Resources
zPublished Books
zHello World! Computer Programming for Kids & Other Beginners

(Sande, Sande: 2009)
zInvent Your Own Computer Games with Python (Sweigart: 2010)
zPython Programming for the Absolute Beginner (Dawson: 2010)
zLearning with Python: How to Think Like a Computer Scientist

(Downey, Elkner, Meyers: 2002)
zLearn Python the Hard Way (Shaw, 2010)

zOnline Books, Tutorials, Environments, etc.
zHow to Think Like a Computer Scientist (Downey, Elkner, Meyers)
zLearning to Program (Gauld)
zLiveWires Python course
zA Byte of Python (Swaroop)
zInstant Hacking: Learning to Program with Python (Hetland)
zSnake Wrangling for Kids (Briggs)
zComputer Programming is Fun! (Handy)
zKarel the Robot clones: Guido van Robot, RUR-PLE

(c) 1998-2013 CyberWeb Consulting.
All rights reserved.

Interactive Interpreter
zRunning Python's interpreter from the default IDE: IDLE

zStarting from the cmd-line; can also run scripts (.py extension)
$ python # or C:\> python
Python 2.6.2 (r262:71600, May 12 2009, 23:46:27)
[GCC 4.0.1 (Apple Inc. build 5465)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>
>>> print 'Hello World!'
Hello World!

(c) 1998-2013 CyberWeb Consulting.
All rights reserved.

What You Just Saw
z>>> ← this is the Python prompt
zEnter any Python command after it

zUse print to display output to users
zUse print() in Python 3

zTo exit interactive interpreter
zCtrl-D from IDLE or *ix command-line
zCtrl-Z from a DOS/command shell

zIntegrated Development Environment: developer tools

zInteractive interpreter: testing, debugging, hacking,
experimenting regardless of IDE use or otherwise

(c) 1998-2013 CyberWeb Consulting.
All rights reserved.

Getting Python on your Computer
zUnix (Linux, Mac OS): already installed
zPCs, source, and other downloads
zpython.org or corepython.com

zOther IDEs
zSPE (pictured) pythonide.stani.be
zPythonWin sf.net/projects/pywin32
zEclipse + PyDev eclipse.org & pydev.sf.net

zKomodo activestate.com/komodo
zWingIDE wingware.com
zPyCharm jetbrains.com/pycharm

(c) 1998-2013 CyberWeb Consulting.
All rights reserved.

Common Beginner Gotchas
zCode delimited by indentation not braces { }

if x > 10:
return "'x' is greater than 10"

else:
return "'x' is less than 10"

zSimilarly, no extraneous characters (; , $, …)

zNo switch-case, private class members, ++/--,
static type checking, anonymous blocks, etc.

zTrue division: 1/2 == 0.5 (not 0)
zFreaky-looking floats: 1.1 → 1.10000000001
zSingle element tuple needs comma: (None,)

(c) 1998-2013 CyberWeb Consulting.
All rights reserved.

Objects

zStandard Types
zNumbers (3-8)
zStrings (2-3)
zLists
zTuples
zDictionaries
zSets (2)

zOther Types
zNone
zFiles
zFunctions/Methods
zModules
zType/Classes
zmiscellaneous

� Allocated on assignment: Dynamic/Duck Typing
� Additional refs (aka aliases) similar to pointers
� Call by Reference, Call by Value? Neither. Both.
� Memory Management: Reference Counting

(c) 1998-2013 CyberWeb Consulting.
All rights reserved.

Variables and Expressions
>>> 4 + 6 * 5 # math ops like other langs
34
>>> a = 4 + 6 ** 2 # no declaration needed
>>> a
40
>>> a = 'Python' # auto garbage collection
>>> b = 'is cool'
>>> a + b # ops can be overloaded
'Pythonis cool'
>>> a = a + ' ' + b # reassignment no problem
>>> a
'Python is cool'
>>> # useful interactive tool

(c) 1998-2013 CyberWeb Consulting.
All rights reserved.

Numbers
zIntegers (no size limit except for VM)
z-680, 0o237, 0xDEADBEEF, 64-0x41, 0b110

zFloating point real numbers (IEEE-754 C double)
z-97.65, -3.14159, -6e2, 0.1

zComplex numbers
zComposed of real and imaginary parts (floats)
z11.65-5.55J, 4J, -3e2+8.73J, 0.1-2.3e4J

zAlso long, bool, Decimal, Fraction, Rational, etc.
zOther modules: math, cmath, random, operator

(c) 1998-2013 CyberWeb Consulting.
All rights reserved.

Standard Operators
+ - * / // % **
<< >> & | ^ ~
== >= <= < > !=
is is not and or not

•Grouping expressions in () okay as usual
•** means exponentiation, % means modulus/remainder

•/ means true division in 3.x and classic division in 2.x
•Use // for standard integer floor division

•Assignment using single equals (=)
•Augmented assignment +=, -=, *=, etc. (no ++ though)

(c) 1998-2013 CyberWeb Consulting.
All rights reserved.

Strings ' ' " " ''' '''
zStrings are sequences of characters (single/double quotes)
zFormat operator (%) for printf()-like functionality
zTriple quotes allow special characters like newlines

>>> s = 'Python'
>>> s * 2
'PythonPython'
>>> s = s * 2
>>> s
'PythonPython'
>>> s[4:6]
'on'
>>> s[-1]
'n'
>>> s[-4:-1]
'tho'
>>> s[:6]
'Python'

>>> '%s is number %d' % (s[:6], 1)
'Python is number 1'
>>> s = s[:6] + ' is cool'
>>> s
'Python is cool'
>>>
>>> hi = '''hi
there'''
>>> hi
'hi\nthere'
>>> print hi
hi
there

(c) 1998-2013 CyberWeb Consulting.
All rights reserved.

Lists [] and Tuples ()
zLists are ordered sequences of arbitrary objects
zMutable (values can be updated)
zCan have lists of lists, i.e., multidimensional indexing
zTuples similar but immutable (no value updates allowed)
z"List comprehensions" allows for quick logical building of lists

zCommon list methods:
zlist.sort() # "sort" list contents in-place
zlist.reverse() # reverse a list in-place
zlist.append() # append item to list
zlist.remove/pop() # remove item(s) from list
zlist.extend() # extend a list with another one
zlist.count() # return number of item occurrences
zlist.index() # lowest index where item is found
zlist.insert() # insert items in list

(c) 1998-2013 CyberWeb Consulting.
All rights reserved.

List Operations
>>> m = ['Core', 'Programming', 9, 2006]
>>> m.append('Prentice Hall')
>>> m.insert(1, 'Pytho')
>>> m
['Core', 'Pytho', 'Programming', 9, 2006, 'Prentice Hall']
>>> m[1] = 'Python'
>>> m.pop(3)
9
>>> m
['Core', 'Python', 'Programming', 2006, 'Prentice Hall']
>>> m.sort()
>>> m
[2006, 'Core', 'Prentice Hall', 'Programming', 'Python']

>>> [i*3 for i in range(20) if i % 2 == 0]
[0, 6, 12, 18, 24, 30, 36, 42, 48, 54]
>>> f = open('myFile', 'r')
>>> data = [line.strip() for line in f]
>>> f.close()

(c) 1998-2013 CyberWeb Consulting.
All rights reserved.

Dictionaries { }
zDictionaries are Python's only mapping type
zMutable, resizable hash tables
zMappings of keys to values

zKeys are scalar (usually strings or numbers)
zValues are arbitrary Python objects
zNo key collisions allowed
zSimilar to Java HashMaps and Perl hashes/associative arrays
zCommon dictionary methods:
zd.keys() # iterable: keys of d
zd.values() # iterable: values of d
zd.items() # list of key-value pairs
zd.get() # return key's value (or default)
zd.pop() # remove item from d and return
zd.update() # merge contents from another dict

(c) 1998-2013 CyberWeb Consulting.
All rights reserved.

Dictionary Operations
>>> d = {'title': 'Core Python Programming', 'year': 2007}
>>> d
{'year': 2007, 'title': 'Core Python Programming'}
>>> 'year' in d
True
>>> 'pub' in d
False
>>> d.get('pub', 'N/A') # KeyError if d['pub']
'N/A'
>>> d['pub'] = 'Prentice Hall'
>>> d.get('pub', 'N/A') # no KeyError for d['pub'] now
'Prentice Hall'
>>> for eachKey in d:

print eachKey, ':', d[eachKey]

year : 2007
pub : Prentice Hall
title : Core Python Programming

(c) 1998-2013 CyberWeb Consulting.
All rights reserved.

if-elif-else Statements
zConditional statements are what you expect

prompt, get, and check user input
data = raw_input("Enter 'y' or 'n': ").lower()

if data[0] == 'y':
print "You typed 'y'." # 'y' key

elif data[0] == 'n':
print "You typed 'n'." # 'n' key

else:
print 'invalid key!' # other key

zTernary Operator (aka Conditional Expressions: C ? T : F)

smaller = x if x < y else y # T if C else F

(c) 1998-2013 CyberWeb Consulting.
All rights reserved.

Loops
zPython has while and for loops – while loops are "normal"
zfor loops more like shell foreach
zIterate over a sequence rather than as a conditional
zrange() was created to "simulate" a traditional for

aList = [123, 'xyz', 45.67]
>>> for eachItem in aList:
... print eachItem
123
xyz
45.67

>>> for i in range(0, 3): # [0, 1, 2]
... print i
0
1
2

>>> i = 0
>>> while i < 3:
... print i
... i += 1
0
1
2

(c) 1998-2013 CyberWeb Consulting.
All rights reserved.

zOpen a file and get back a file object

f = open(file_name, access_mode)

zMost commonly-used file methods
f.close() Close file
f.read() Read bytes from file
f.readlines() Read all lines into an iterable
f.write() Write a string to file

zExample of displaying a text file to the screen

Files

fp = open('data.txt', 'r') # open file, get file object
for eachLine in fp: # display one line at a time

print eachLine,
fp.close() # close file

(c) 1998-2013 CyberWeb Consulting.
All rights reserved.

Functions
zFunction declarations created with def statement
zSupport for default and variable-length arguments
zSupport for variety of invocation styles

def foo(x): # create foo()
print 'Hello %s!' % x

>>> foo('Guido') # call foo()
Hello Guido!

zFunctional Programming elements:
zList comprehensions and generator expressions
zCurrying and partial function application
zStatically-nested: Inner functions and closures
zAnonymous Functions (lambda)

(c) 1998-2013 CyberWeb Consulting.
All rights reserved.

Importing Modules & Attributes
zImporting a module using import statement
import module_name

import string
num = string.atoi('123')

zImporting module attributes using from-import statement
zNames brought into local namespace

from module_name import module_element

from string import atoi
num = atoi('123')

zPackages: allow for organizing modules using the file system

(c) 1998-2013 CyberWeb Consulting.
All rights reserved.

Standard Library Sampler (“B.I.”)

API for SQLite databasessqlite3

Email/MIME construction and parsing packageemail

External process managementsubprocess

Data compression and archive filesgzip, bz2, zipfile, tarfile

Various Internet client libraries{ftp,pop,url,http,smtp,*}lib

Serialize Python objectspickle, cPickle, shelve

SAX parsing, DOM tree mgmt, ElementTree APIxml.sax, xml.dom, xml.etree

Various math/numeric processing{c,}math, random, fractions,…

High-level multithreading, multiprocessingthreading, multiprocessing

Python/Tk GUI toolkit interfaceTkinter

Socket interface & server classes (TCP, UDP)socket, SocketServer

Date and time constants and functionstime, datetime, calendar

Regex, JSON, and CSV text processingre, json, csv

Operating and file system interfaceos and os.path

System data, processing, and functionalitysys

DescriptionModule Name(s)

(c) 1998-2013 CyberWeb Consulting.
All rights reserved.

Object-Oriented Programming
z"Constructor"/Initializer is __init__(), "self" is "this"
zClass instantiation via function interface (rather than "new")
zInstance attrs, multiple inheritance; no overloading nor private

class MyClass(object):
... def __init__(self, data=2):
... self.info = data
... def times(self, x):
... return "%d * %d is %d" % (
... self.info, x, self.info * x)
>>>
>>> inst = MyClass(21)
>>> inst.info
21
>>> print inst.times(3)
21 * 3 is 63

(c) 1998-2013 CyberWeb Consulting.
All rights reserved.

Exceptions and try-except
zException handling via try-except statement

try:
statements to monitor

except (ErrorType1, ErrorType2,…) as e:
code to exec if exception occurs

try:
fp = open('data.txt', 'r')

except IOError as e:
print 'file open error:', e
return False

zThrow exceptions with raise; there is also a finally

(c) 1998-2013 CyberWeb Consulting.
All rights reserved.

Programmer Tools
� Debugger

� pdb

� Profilers
� profile
� hotshot
� cProfile

� Tracer/Tracker
� trace

� Logger
� logging

� Timer
� timeit

� Help/Documentation
� pydoc

� Testing
� unittest
� doctest
� (external) nose
� (external) py.test
� Testing tools taxonomy
goo.gl/Fpz0Z

(c) 1998-2013 CyberWeb Consulting.
All rights reserved.

Python 2 vs. Python 3
� The What and the Why

� Fix early design flaws
� Some new features, many small improvements
� Plan: develop (remainder of) 2.x and 3.x together
� Provide transition tools (2to3, 2.6+)

� Key Updates (no major syntax changes)
� print, exec changed to functions
� True division: 1/2 == 0.5
� Performance enhancements (more iterators)
� Type consolidation (integers, classes, obj comps)
� Strings: Unicode default; bytes/bytearray types

� Python 3 article on InformIT
� http://www.informit.com/articles/article.aspx?p=1328795

(c) 1998-2013 CyberWeb Consulting.
All rights reserved.

 Additional Resources
zPublished Books
zQuick Python Book (Ceder, 2010)
zCore Python Programming (Chun, 2006/2009)
zPython Fundamentals LiveLessons DVD (Chun, 2009)
zBeginning Python (Hetland, 2008)
zDive into Python (Pilgrim, 2009)

zPython Standard Library by Example (Hellmann, 2011)
zPython Essential Reference (Beazley, 2009)
zPython in a Nutshell (Martelli, 2006)
zPython Cookbook (2005 [2.x] & 2013 [3.x])

zOther Resources
zPython Reading List(s) goo.gl/i4u0R
zPython Quick Reference Guide rgruet.free.fr#QuickRef
zWorldwide Python Conferences www.pycon.org
zCore Python site & blog corepython.com & wescpy.blogspot.com
zcomp.lang.python newsgroup groups.google.com
zPyPI/Cheeseshop repository python.org/pypi

(c) 1998-2013 CyberWeb Consulting.
All rights reserved.

1. Beautiful is better than ugly.
2. Explicit is better than implicit.
3. Simple is better than complex.
4. Complex is better than complicated.
5. Flat is better than nested.
6. Sparse is better than dense.
7. Readability counts.
8. Special cases aren't special enough to break the rules.
9. Although practicality beats purity.
10. Errors should never pass silently.
11. Unless explicitly silenced.
12. In the face of ambiguity, refuse the temptation to guess.
13. There should be one — and preferably only one — obvious way to do it.
14. Although that way may not be obvious at first unless you're Dutch.
15. Now is better than never.
16. Although never is often better than right now.
17. If the implementation is hard to explain, it's a bad idea.
18. If the implementation is easy to explain, it may be a good idea.
19. Namespaces are one honking great idea — let's do more of those!

The Zen of Python (or import this by Tim Peters)

(c) 1998-2013 CyberWeb Consulting.
All rights reserved.

Thank you!

Q&A
+Wesley Chun (plus.ly/wescpy)
@wescpy (twitter.com/wescpy)

wescpy@gmail.com
cyberwebconsulting.com

corepython.com
wescpy.blogspot.com

