Seismic Design of Adjacent Rail Bridges in Deep Liquefiable Soils

Kelly Burnell, PE, Kleinfelder, San Diego, CA Ebrahim Amirihormozaki, PhD, PE, Kleinfelder, San Diego, CA

Project Purposes

-LOSSAN Project-

- C Carries Commuter, Amtrak and BNSF Freight rail lines
- C Construct 0.9-mile segment of second main track

Project Purposes -Mid-Coast Lightrail Extension Project-

- \bigcirc 11 mile Extension
- 9 new stations

San Diego River Bridge

Typical Section

Design Criteria for Different Structures

- 3 Level Seismic Performance Criteria
- Site Specific RSA

	PGA (g)	Return Period (years)	Performance
Serviceability	0.13	100	Minor Damage, Structure useable
Ultimate	0.27	500	Inspectable Damage
Survivability	0.53	2400	Collapse Prevention

Design Criteria for Different Structures

- 3 Level Seismic Performance Criteria
- Site Specific RSA

	PGA (g)	Return Period (years)	Performance
Serviceability	0.13	100	Minor Damage, Structure useable
Ultimate	0.27	500	Inspectable Damage
Survivability	0.53	2400	Collapse Prevention

C Mid-Coast Lightrail

- Caltrans Seismic Design
 Criteria
 - 1000-yr Return Period
 - PGA 0.42g
 - Collapse Prevention

Response Spectra

River Soil Conditions During Earthquake

- Oltimate and Survivability Events Liquefaction up to 80' deep
- C Scour is up to 20 feet
- Slope Stability and Lateral Spreading

Original Approach – Ground Improvement

Original Approach – Ground Improvement

Ground improvement 90 feet deep
 Conflicts with existing foundations
 Staging of ground improvement

Existing Trolley Bridge Approach– Ground Improvement

Alternative Approach – Permanent Steel Casings

San Diego River

○ Approx. \$4M Cost Savings

Alternative Approach

C Why not just use larger diameter conventional shafts?

Bridge Plan

Resisting Cross Section

Resisting Cross Section

Resisting Cross Section

Finite Element Model (SAP 2000)

Seismic Force

Bridge Plan

Seismic Design of Superstructure – Key Points

1. Simplified Resisting Cross Section

 Pay Attention to Shear Flow actions at ends of floor beams

