H₂ Sensor Workshop

Overview of Fuel Cell Technologies: Hydrogen Sensor Activities

Scott McWhorter U.S. Department of Energy Fuel Cell Technologies Program Technical Advisor

Antonio Ruiz Safety, Codes and Standards Team Lead

June 8, 2011

H₂ Sensor Overview

ENERGY Energy Efficiency & Renewable Energy

Significant progress towards meeting some targets has been made; however <u>no</u> <u>H₂ Sensor meets all DOE targets</u>

Hydrogen can be used as a clean and renewable alternative to carbonbased fuels in a variety of markets and applications. Hydrogen sensors must be available for the safe and successful deployment of this fuel.

H₂ Sensors are needed and required for:

- 1. Equipment used for
 - Compression
 - Processing
 - Dispensing
 - Storage
 - Hydrogen generation
- 2. Fuel cell vehicles
- 3. Indoor refuelings
- 4. Garages
- 5. Stationary fuel cell installations

Sensor Types

- Electrochemical sensors
- Metal Oxide sensors
- "Pellistor"-type combustible gas sensors
- Thermal conductivity sensors
- Optical device sensors
- Pd-firm & Pd-alloy film sensors

Issues in Sensor Technology

- Sensitivity
- Selectivity issues (e.g., CO interference)
- Temperature range response
- Response and recovery times
- Environmental affects
- Chemical poisoning
- Durability

2007 H₂ Sensor Workshop

The 2007 H_2 sensor workshop brought together experts from industry, government, national labs, and universities to asses the current H_2 sensor landscape and draft technical and performance requirements to guide the development of H_2 sensors. The table below summarizes the proposed targets.

Parameter	Target
Sensitivity	25% LFL (1 vol% H ₂)
Range and Accuracy	0.04-4%, ±1% of full scale over the lifetime of the sensor
Cross Sensitivity	RH, H2S (<10 ppm), CH4 (<1%), CO (<50 ppm), VOCs (0.5%)
Lifetime	5 years
Response Time	<1 min at 25%LFL (1 vol%) <1 sec at 100% LFL (4 vol%)
Recovery Time	<1 min
Reliability	100%, no false positive
Drift	No calibration required for life of the sensor
Temperature	-40°C to +60°C
Operational	Alarm for sensor failure
Listing	Listed by nationally-recognized testing laboratory (i.e., UL, CE)
Cost (mass production)	≤\$40 for packaged device

2011 H₂ Sensor Workshop

ENERGY Energy Efficiency & Renewable Energy

Assess H₂ Sensor Landscape and Refine Technical and Performance Targets

Great progress in the commercialization of H_2 and fuel cell technologies has been made since 2007 when applications and targets were more general. Specific products and early-markets are more clearly defined and several OEMs have confirmed their commitment to commercial FCEVs by 2015. As technology has advanced, now is the opportunity to define requirements for applications and assess current H_2 sensor capabilities.

Tentative Topic Areas

Technology Update

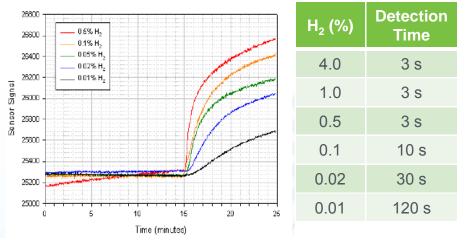
Safety, Codes & Standards

Industry Perspectives

Barriers to sensor deployment

International Perspectives

Workshop Goals


- **1. Review Sensor Technologies**
- 2. Identify Sensor Specific Applications
- 3. Update Sensor Performance Metrics
- 4. Identify Research Areas

FCT Funded H₂ Sensor Highlights

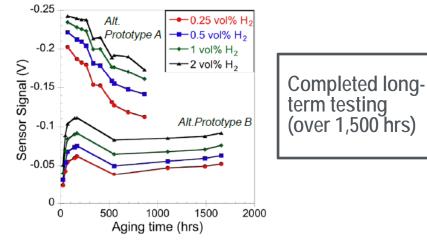
Safe Detector System for Hydrogen Leaks – Intelligent Optical Systems

Optical Waveguide Hydrogen Sensing

- Immobilize H₂-sensitive indicator where the intensity of indicator color changes yields H₂ concentration.
- Comes in optrode, integrated optic waveguide, and distributed sensing fiber formats.
- Verify sensor repeatability/reversibility

High sensitivity and rapid alarm capability demonstrated

Hydrogen Safety Sensors – LANL/LLNL


U.S. DEPARTMENT OF

Energy Efficiency &

Renewable Energy

Controlled Interfaces for Sensor Design and Development

- Develop a sensor fabrication process and perform long term testing (minimum of 500 hrs) of pre-commercial hydrogen safety sensor prototypes.
- Stable and reproducible three phase interfaces with exceptional sensitivity and stability

DOE – NREL Safety Sensor Laboratory

ENERGY Energy Efficiency & Renewable Energy

NREL works with sensor manufacturers to validate sensor technology and independently tests sensors and prototypes to provide quantitative performance specifications.

The NREL hydrogen safety sensor test facility (Robert Burgess/NREL) PIX 18240

Test Apparatus: The apparatus can simultaneously test multiple sensors and can handle all common electronic interfaces. The lab is set up for 24-hour operation, and all tests can be run and monitored remotely.

Test Plan: An NREL-developed test plan with well defined protocols in which sensor performance metrics are measured under prescribed gas composition and environmental stresses (temperature, pressure, and humidity extremes).

International Collaboration: NREL and the European Joint Research Centre's (JRC's) Institute for Energy are collaborating via round-robin testing of representative commercial hydrogen detectors. (SINTERCOM)

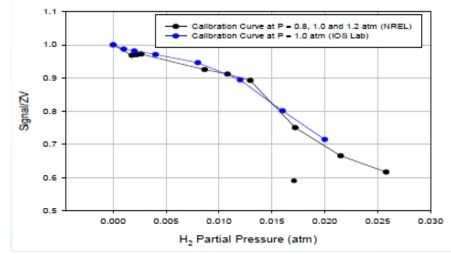
Manufacturer Support: The Sensor Laboratory provides manufacturers access to a state-of-the-art test facility for an independent, unbiased evaluation of their technologies. Data and an expert critique of performance metrics are shared with manufacturers.

H₂ Safety Sensor Apparatus: Designed and built at IIT.

Thank you

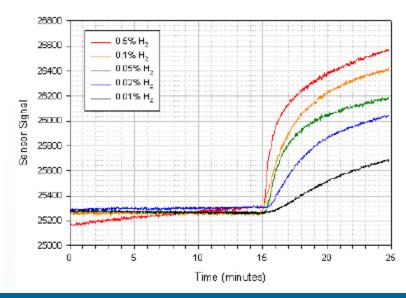
Christopher.McWhorter@ee.doe.gov

Antonio.Ruiz@ee.doe.gov


www.hydrogenandfuelcells.energy.gov

DOE – Intelligent Optical Systems

Safe Detector System for Hydrogen Leaks


Optical Waveguide Hydrogen Sensing

- Immobilize H₂-sensitive indicator in optically transparent medium where the intensity of indicator color changes yields H₂ concentration.
- Comes in optrode, integrated optic waveguide, and distributed sensing fiber formats.

U.S. DEPARTMENT OF

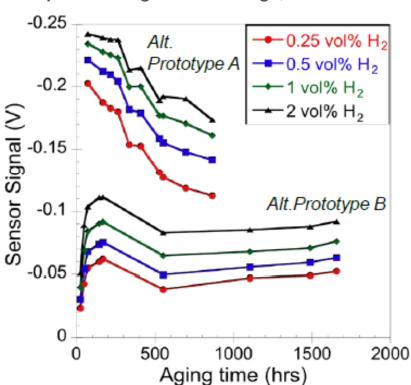
Verify sensor repeatability/reversibility

H ₂ (%)	Detection Time
4.0	3 s
1.0	3 s
0.5	3 s
0.1	10 s
0.02	30 s
0.01	120 s

High sensitivity and rapid alarm capability demonstrated

Energy Efficiency &

Renewable Energy

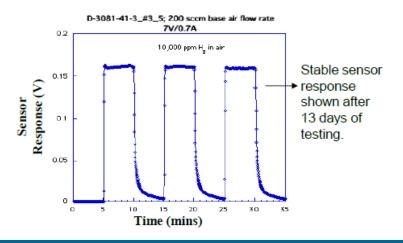

DOE – LANL/LLNL

Completed long-term testing (over 1,500 hrs)

U.S. DEPARTMENT OF

Energy Efficiency &

Renewable Energy



Prototype that is conducive to commercialization, has low power consumption, is compact, has a simple transduction mechanism, and a fast response time.

Hydrogen Safety Sensors

Controlled Interfaces for Sensor Design and Development

- Develop a sensor fabrication process and perform long term testing (minimum of 500 hrs) of precommercial hydrogen safety sensor prototypes.
- Stable and reproducible three phase interfaces with exceptional sensitivity and stability

