

John Hall, Plant Logistics Manager, CNH Wichita Skid Steer, Compact Track Loader Operations

The development of World Class Manufacturing

WCM was developed by Fiat and partnering firms in 2005. Hajime Yamashina, Professor Emeritus at Kyoto Universality in Japan, played a key role. From the outset, all Fiat-group companies took part in the new journey towards operational excellence. Consequently, WCM was launched in Fiat's automobile and powertrain divisions, in Maserati, in Lancia, in Alfa Romeo, and so on. The Fiat-owned companies CNH (manufacturer of Case agricultural equipment and New Holland tractors) and the truck- and engine manufacturer Iveco also use WCM as their XPS. In fact, today, companies as varied as the Royal Mail Ariston (manufacturer of white goods), Unilever (consumer goods), Atlas Copco (industrial tools), Barilla (pasta) and 12 different transportation companies reportedly use the WCM concept.

The Chrysler Group joined the WCM when Fiat acquired majority shares in 2009 (as a consequence of the financial crisis driving Chrysler to bankruptcy). Today, Chrysler is known as *the Comeback Kid*. The incredible transformation is partly credited the WCM as a change program. A stronghold of choosing WCM as an "off-the-shelf XPS" is that companies that join, get the benefit of a world class benchmark from the other participating companies. Today, 166 manufacturing plants in 16 countries are active partners in the worldwide WCM Association. 30 of these are Chrysler plants, whereas 45 belong to Fiat.

WHAT IS WCM?

WCM is a proven continuous improvement methodology

- Helps prioritize resources to attack problems and losses
- Aims to achieve safe, sustainable manufacturing processes with ZERO loss and ZERO defects

WCM PILLARS

MANAGERIA PILLARS

SAFETY

SAFETY IS PARAMOUNT

- PREVENT safety hazards
- **PROTECT** the workforce from risks and injuries
- **PRESERVE** safe working conditions always
- WCM aims towards **ZERO** unsafe acts and **ZERO** unsafe conditions

COST DEPLOYMENT

This is WCM's Compass for all pillars

- Provides clear Direction towards top losses
- Helps Prioritization of resources for maximum benefit
- > Tracks **Progress** of pillar projects and financials

FOCUSED IMPROVEMENT

Technical Pillar for FOCUSED Projects

- > Work with a clear scope on a **Specific** problem
- Focused projects generally use specialized tools for specific problem solving

WORKPLACE ORGANIZATION

Pillar for workplace design to attack

- MUDA Waste (Overproduction, Inventory, Wait time, Motion, Transport, Rework, Over-processing)
- MURI unreasonable burden
- MURA variation, inconsistency
- Utilizes most of the IE tools to identify, measure and provide solutions to problems

AUTONOMOUS MAINTENANCE

Pillar that ensures daily basic conditions

- Cleaning and inspection Calendars
- Daily workstation level checks
- Works towards high Equipment Efficiency and Effective Performance
- Emphasizes on operator-ownership

PROFESSIONAL MAINTENANCE

- Periodic maintenance of machine and equipment by skilled professionals
- Aims to increase the time between failures of equipment (MTBF) and reduce repair time (MTTR)
- Prevent losses due to machine breakdowns

QUALITY CONTROL

- Gate keeper for Standards
- From start to finish, ensures products meet customer requirements
- Works towards ZERO Defects
- Ensures customer quality satisfaction
- Utilizes highly specialized tools for analysis and quality assurance

LOGISTICS

Pillar responsible for making parts available

- > at the right location
- > at the right time
- in the right manner that meets customer requirements
- Safe, efficient and cost effective methods of logistics are vital to any mfg. environment

EARLY EQUIPMENT MANAGEMENT

- Based on experience with existing equipment, ensure procurement of new equipment that are engineered to meet requirements for safety, reliability and easy maintenance
- Generate checklist items that would be useful for new equipment procurement

EARLY PRODUCT MANAGEMENT

Driving design for manufacturability, to make advancements in safety, quality and customer care

- Based on experience with existing product, ensure future designs address concerns and accommodate changes based on customer feedback
- Continuously improving product design for market competence and customer satisfaction

PEOPLE DEVELOPMENT

- Creating Exceptional people
- Impart state of the art training and development to create a strong workforce
- Facilitate knowledge sharing and creating best practices throughout the journey of continuous improvement

ENVIRONMENT

- Ensuring our responsibility towards the environment and its preservation for future generations
- Continuously pursuing ZERO WASTE philosophy through reuse and recycle mechanisms
- Prevent all Environmentally unsafe acts and conditions throughout the facility
- Create a sense of awareness among other partners

FOUR PHASES OF LOGISTICS

The flow must be short and simple !

Improvement from big movements to small movements gradually.

PHASE 1 : CREATE A FLOW

[Broad standardization and synchronization]

- a) Establishment of the concept of overall logistics and design of logistic network. (Customers and suppliers inclusive)
- b) Design of external logistics and establishment of routes for scheduled transportation (min. : 1/day).
 (Fixed time, variable quantity fixed time, fixed quantity)
- c) Layout change for internal logistics.
- d) Arrangement of the places of products and parts and stores, the ways items are packed. (Container, packaging shape, size, the number of items stored in a container, easiness to identify items)
- e) Use of kanbans.
- f) Use of the water strider method.

WORK PLACE ORGANIZATION

- a) Improvement of assembly line layout (Simplify)
- b) Making the assembly line short
- c) Leveling daily production
- d) Connection of the sublines to the assembly lines.

Putting sub assembly lines into lines as much as possible.

e) Following the pull principle.

TO START:

3S

- 1. Seiri (Abandon the unnecessary)
- 2. Seiton (Putting things in order)
- 3. Seiso (Keep tidy and clean)

5T

- 1. Tei-ji
- 2. Tei-ichi
- 3. Tei-hyouji
- 4. Tei-ryou
- 5. Tei-shoku

SEITON: 5T (TEI-JI, TEI-ICHI, TEI-HYOUJI, TEI-RYOU, TEI-SHOKU)

- Tei-ji : Fixed route (where to pass?) In order to create a flow of products, information, equipment and/or people
- Tei-ichi : Fixed place (where to put?) In order to determine the place to put and take things easily, quickly and surely
- Tei-hyouji : Standardized display (where is it, what is it, what/how to do?) In order to let everybody understand easily places, articles, what/how to do
- Tei-ryou : Fixed quality (How much?) In order to control quantity of articles
- Tei-shoku : Standardized colors (How to distinguish?) In order to prevent errors by using colors

PHASE 2: CREATE A SMOOTH FLOW

Making a flow capable to cope with change

Logistics

- a) Reorganization of logistics points to shorten the line of logistic flows.
- b) Re assessment of "purchase" or "make in-house". Try to produce products of small quantity in-house.
- c) Reorganization of stores and level production.

Work place organization

- A. Improvement of setup operation.
- B. Connection of lines. Absorption of smaller lines into the main line. Gathering lines. Promotion of mixed production.
- C. Creating multi-skilled labor.
- D. Integration of lines.

PHASE 3: CREATE AN ACCURATE FLOW

Logistics

- a) Improvement of the ways items are packed in such a way that parts and products can be put and can be easily picked up and taken out. Making the quantity smaller.
- b) Reduction of the size of stores and increase of the number of transportation.
- c) Improvement of the accuracy of utilized kanban.
- d) More leveling.

Work place organization

- a) Improvement of the accuracy of SOP. Small, smooth and rhythmical movement
- b) Arrangement of the workshop in such a way that any anomaly can be detected immediately.

PHASE 4: CREATE A CONTROL FLOW

Logistics

- a) Making a manual for using kanban.
- b) Preparation of management data on Q, C and D, especially about root causes.

Establishment of routine control, anomaly control and control for changes.

- c) Management of PM
- d) Making texts for education and training and management of personal career history.

STEP 1 INITIAL CLEANING

wo

LOG

STEP 1 PLAN FOR EVERY PART

Physicals for Each Part Number

Packaging for Each Part Number

ITA's ACTICE

View Supermarket	Parts						r Part Number: 84280313 - DUCT	-						
ter: Supermark	et Supermark	et Group Cab Oper 1 SM			D Fetch	Parent	Parent Description	Model	Delivery Method Line		Station	Quantity L	Left Right	
Ler. Supermarke	Supermark	ergroup Cab Oper 1.3M			- Ferci	84270617	I/SMALL FRAME HEAT	L213	JIT 57	Assy Cab Oper 1	Cab Oper 1 #7	1	0 0	12/31/2055
All Parts C Activ	e Parte C Po	ssible Obsolete 🛛 🔿 Not In Sup	ermarket			84201088	I/MEDIUM FRAME HEAT F5C I/LARGE FRAME HEATER	TR270 NR TV380 T4A	JII 57	Assy Cab Oper 1 Assy Cab Oper 1	Cab Oper 1 #7 Cab Oper 1 #7	1	0 0	12/31/2055
All alls CAU			ermarket	-,		84201087	I/MEDIUM FRAME HEAT ISM	L218	JIT 57	Assy Cab Oper 1	Cab Oper 1 #7		0 0	12/31/2055
Supermarket	Part Number	Description	Location	Pick Ord	ii	84201092	I/MEDIUM FRAME HVAC ISM	SR175 NR	JIT 57	Assy Cab Oper 1	Cab Oper 1 #7		0 0	12/31/2055
Cab Oper 1 SM	47526360	BRACKET W RH CONSOLE GF				84201090	I/LARGE FRAME HEATER	TR320E	JIT 57	Assy Cab Oper 1	Cab Oper 1 #7	1	0 0	12/31/2055
Cab Oper 1 SM	47526432	MOUNT HAND THROTTLE	RP1N01B1	103		47374348	I/MEDIUM FRAME HVAC F5C	C227 T4B	JIT 57	Assy Cab Oper 1	Cab Oper 1 #7	1	0 0	12/31/2055
Cab Oper 1 SM	47536465	MOUNT HAND THROTTLE CE	RP1N01B4	143		84201090	I/LARGE FRAME HEATER	C238 NR	JIT 57	Assy Cab Oper 1	Cab Oper 1 #7	1	0 0	12/31/2055
Cab Oper 1 SM	47568942	DUCT AIR INTAKE				84201095	I/LARGE FRAME HVAC	SV300 NR	JIT 57	Assy Cab Oper 1	Cab Oper 1 #7	1	0 0	12/31/2055
	82002966		RP1N01B3	127		84201090	I/LARGE FRAME HEATER	TV380	JIT 57	Assy Cab Oper 1	Cab Oper 1 #7	1	0 0	12/31/2055
Cab Oper 1 SM				_		84477538	I/MEDIUM FRAME HEAT F5C	SR175 T4B	JIT 57	Assy Cab Oper 1	Cab Oper 1 #7	1	0 0	12/31/2055
Cab Oper 1 SM	84280313		RP1N01C1	131		84201092	I/MEDIUM FRAME HVAC ISM I/SMALL FRAME HEAT	SV185E L215 NR	JII 57	Assy Cab Oper 1 Assy Cab Oper 1	Cab Oper 1 #7 Cab Oper 1 #7	1	0 0	12/31/2055
Cab Oper 1 SM	84291791	PLATE C-BELT 3PT RETRACT	RP1N01A4	141		84605055	I/LARGE FRAME HEATER	L215 NR	JII 57	Assy Cab Oper 1 Assy Cab Oper 1	Cab Oper 1 #7 Cab Oper 1 #7	- 1	0 0	12/31/2055
Cab Oper 1 SM	84312310	COVER PLATE GRAY	RP1N01A2	109		84201095	I/ ARGE FRAME HEATER	C232	JIT 57	Assy Cab Oper 1	Cab Oper 1 #7		0 0	12/31/2055
Cab Oper 1 SM	84473542	BRACKET W LH CONSOLE GR				84201095	I/LARGE FRAME HVAC	SR220E	JIT 57	Assy Cab Oper 1	Cab Oper 1 #7	- 1	0 0	12/31/2055
Cab Oper 1 SM	84552202	SHEET SPEAKER BRACKET	RP1N01B2	119		84394632	I/LARGE FRAME HVAC	SR250 T4A	JIT 57	Assy Cab Oper 1	Cab Oper 1 #7	1	0 0	12/31/2055
						84477537	I/MEDIUM FRAME HVAC F5C	SV185 T4B	JIT 57	Assy Cab Oper 1	Cab Oper 1 #7	1	0 0	12/31/2055
						84201095	I/LARGE FRAME HVAC	SR220 NR	JIT 57	Assy Cab Oper 1	Cab Oper 1 #7	1	0 0	12/31/2055
						84201095	I/LARGE FRAME HVAC	SV300E	JIT 57	Assy Cab Oper 1	Cab Oper 1 #7	1	0 0	12/31/2055
						84201095	I/LARGE FRAME HVAC	C232 NR	JIT 57	Assy Cab Oper 1	Cab Oper 1 #7	1	0 0	
						47377918	I/MEDIUM FRAME HEAT F5C	TR310 T4B	JIT 57	Assy Cab Oper 1	Cab Oper 1 #7	1	0 0	
						184201088	MEDIUM FRAME HEAT ESC	TR270	LIIT. 157	Assy Cab Oner 1	Cab Oper 1 #7	1 1	0 0	

STEP 2 JUST-IN-TIME METHOD

The Production Line Pulls the Material JIT or JIS.

STEP 2 JUST-IN-SEQUENCE METHOD

Tanks

ROPS JIS From Warehouse

Supports FIFO!

Axles

Tires JIS From Supplier

STEP 2 EKANBAN METHOD

Returnable Tote Filled by Supplier and Stocked to the Supermarket in the Same Container

STEP 2 EXTERNAL TWO BIN METHOD

792 Class C Part Numbers Delivered by 2 Bin Method

Supports FIFO!

STEP 3 REARRANGE EXTERNAL LOGISTICS

Developed Returnables with Vendors

Recycled Packaging Material 2014:

- 241 Tons of Corrugate
- 590 Tons of Wood

٠

STEP 3 MANY GATES CONCEPT

STEP 5 MATERIAL CLASSIFICATION -

PLANT WIDE

CNH – Wichita Buy Parts

Class			Sub- class	Sub-group	Ezamples	Recommended stock level			Recommended flow type						
		Туре				Level 3	Level 4	Level 5	JIT/JIS fram Sappliar	JIT/JIS fram WH/DA	КАНВАН	TWO-BIN Ststem	кіт ³	Petrollin	
	^	Expensive items (Upper 50% of BOM ~ >\$350)	AA.1	Many variations	Includes all the expensive parts with many variations, bulky or not.	< 2 hrs	< 1 hr	< 30 min	41						
			AA.2	Bulky	Includes all the expensive and bulky parts. Without many variations.	< 2 hrs	< 1 hr	< 30 min		31			from oplier		
^			AA.3	Other expensive	Includes the rest of expensive parts, not assigned to the previous	< 2 hrs	< 1 hr	< 30 min		3			from 🚺		
	в	Bulky items	AB.1	Many variations	Includes all the bulky parts, with many variations.		< 1 hr	< 30 min		396		Ware	ehouse		
			AB.2	Other bulky	Includes the rest of bulky parts, not assigned to the previous sub-groups.	< 2 hrs	< 1 hr	< 30 min	68	237			Ø		
	с	Many variations ¹	AC			< 2 days	<1 day	< 0,5 days		213					
в		Normal	B.1	High consumption		< 2 days	<1 day	< 0,5 days		870					
		Items	B.2	Low consumption		< 2 hrs	< 1 hr	< 30 min		502					
•	C	Small & cheap items	с			< 7 days	< 5 days	< 2 or 3 days			1101	792			
Parts Classified by Percentage								Parts to Pull Logic							
0.09									80%		JIS/JIT-Vend				

STEP 5 JUST-IN-SEQUENCE UPPER CHASSIS CART REFINEMENT

WO

LOG

WICHITA's

(Approved)

STEP 6 ACCURATE FLOW IN THE MODEL PROCESS

Line Load

Replenishment Tool

STEP 6 - INTEGRATION OF DISTRIBUTION

 Project worked with vendor, purchasing, corporate logistics and plant logistics. Lap bars coming from Taiwan

 We are reviewing all international suppliers for opportunities to leverage packaging.

Lap bars from Taiwan were shipped 2 to a box, reconfigured the layout of the lap bars in the box and increased to 4 pieces per box

 Reduction of 18 ocean containers o average per year for lap bars

Reduction of 43,128 lbs. CO2

STEP 6 - INTEGRATION OF DISTRIBUTION

Full container engine deliveries from overseas. Container is live unloaded and the empty container returns to Kansas City, round trip is a cost of \$900

Previously 8 containers a month were filled with returnable racks and returned to engine supplier with an additional \$900 round trip charge, working with corporate logistics and steamship lines racks are returned on containers that delivered engines

Next phase will involve pulling wholegoods units into the outbound mix.

Projected Savings: Transportation \$86,000 annually

CO2 Reduction: 349,000 lbs. CO2

Recycle

Recover

5**R**'S

LOGISTICS TOOLS

Preventive

1	Parts classification
2	Logistics cost deployment
3	phase 1: Creation of a flow, 5T
4	Logistics step 1
5	Logistics step 2
6	Separation operation/transport
7	Line side stock management
8	Logistics step 3
9	QC stage 1 & 2
10	QC stage 3 & 4

11	FIFO
12	Phase 2: smooth flow, SMED
13	Andon
14	QC of incoming materials: phase 5
15	QC of incoming materials: phase 6 & 7
16	Logistics step 4
17	JIT and MRP
18	Logistics Step 5
19	WPO/LOG cross training
20	The way items are packed

Proactive

21	QC of incoming materials: phase 8
22	Phase 3, step 6
23	No breakdowns, no defects
24	Phase 4, step 7: controlled flow
25	Minimum inventory
26	Purchasing policy @ design stage
27	Suppliers' involvement
28	VSM
29	SCM
30	IPS

Reactive

HOW CAN THIS FIT THE ENERGY SEGMENT?

- Engage a Process Expert (3PL or Industrial Engineering support)
- Establish a model area
- Perform a Cost Deployment to understand losses
- Pareto losses and drive project activity by highest losses
- Standardize packaging wherever possible, this includes size and quantity
- Incorporate and Standardize visual management
- Implement minimum material handling concepts
- Standardize put away and picking processes
- Continually drive to 0 human errors

Thank You.

