Blatnik Bridge Location
Blatnik Bridge Location (Cont)

DULUTH, MN

SUPERIOR, WI
Blatnik Bridge Location (Cont)

• Connects Duluth, MN and Superior, WI
• Carries I 535 and US 53
• Crosses the St. Louis River
• Wisconsin end terminates downtown area (surface)
• Minnesota end terminates at interchange
Blatnik Bridge Location (Cont)

- Second longest bridge in Minnesota
- Duluth Port is largest on Great Lakes
 - 900 vessel visits & 35M short tons of cargo
Blatnik Bridge Description

• Carries 4 traffic lanes (2 in each direction)
• 33,900 vehicles a day (2013)
• 120 foot navigational clearance
• 52 spans with total length of 7,980 feet
• 49 approach spans - built-up and rolled multi-girders
• 58’-70’ variable roadway width
• Pin and hanger assemblies in approach spans & truss
Blatnik Bridge Description (Cont)

- Two cantilevered deck trusses (270’ each)
- One through arch truss – cable supported deck
- Main span length = 600 feet
- 9” Reinforced concrete deck & LS overlay
- Longitudinal and transverse PT in pier caps (widening)
Blatnik Bridge Description (Cont)
Blatnik Bridge History

- Construction began in 1958
- Opened to traffic in 1961 ($15M)
- Steel repair and spot paint – 2008
- Suspender cable evaluation and replacement – 2010
- Structural repairs, exp joints and partial painting – 2012 ($13M)
- Structural repairs – 2016 ($2M)
Reasons for the Study

• Significant deterioration developed in truss elements
• Actions required at increasing frequency
• Increased levels of road user delays
• Increasing projects leads to negative public perception
• MnDOT wanted more comprehensive strategy – options?
• Replacement will be expensive!
Future of the Area

- Duluth Port Authority expects shipping increase
- I 35/I 535/US 53 (TPI)
 - Permit restricted, structural issues, poor geometrics
 - 2019-24 / FASTLANE App?
- Bong Bridge (US 2)
 - Built mid-80’s
 - Redeck 2031-35
- Blatnik 2030 +/-?
Study & Assumptions

- Study based upon additional 15 to 40 years of service
- Any replacement options must use same alignment
- Identified investments must maintain:
 - Better than structurally deficient state
 - Continue to allow Minnesota C permit loads (159K)
- Minimal service interruptions for study options
- Provide framework for other MN bridge studies
Study Goals

• Develop a series of strategies to maintain the crossing
• Identify actions and investments to support strategies
• Quantify the effects of traffic interruptions
• Identify and quantify risk factors
• Each strategy is evaluated by life cycle cost analysis
• Provide tool for MnDOT in future decision making
• Investigate option for truss-only replacement
Study Guidance

• Technical Advisory Committee
 • MnDOT
 • WisDOT
 • FHWA
 • Meet 10 times during development of study
 • Review and comment on deliverables

• Stakeholder Advisory Committee
 • Provide input on local Non-DOT related issues
 • Provide review comments on findings
Data Review

- Compile and archive existing bridge data
- Determine conditions only using existing data
 - Existing inspection reports (Routine, FC and UW)
 - Plans and specs – original, rehabilitations, and widening
 - Historical special investigations
- Identify information gaps in existing data
- Recommend actions to address information gaps
- Documentation provided in a technical memorandum
Risk Assessment

- Distributed questionnaire to collect risks
- MnDOT & WisDOT familiar with condition and actions
- Facilitated Risk workshop to collect risk magnitudes
- Additional risks considered from other stakeholders
- Risks classified per additional 15 to 40 year service life
- Results collected in a risk register and risk report
Risk Assessment (Cont)

Risk Impacts by Category - 15 Year

Risk Impacts by Category - 40 Year
Develop Study Options

- Recommendations and associated costs
 - Maintenance recommendations
 - Rehabilitation recommendations
 - Replacement options
- Scenarios developed for 15 to 40 year service life
- Earliest major project date 15 years in future
- Project study limited to 40 years into future
- 100 Year service life used for bridge elements
Develop Study Options (Cont)

• Replacement options along the same alignment
• 12 different scenarios developed and evaluated
• Road user costs generated for each scenario
• Life cycle cost analysis performed and NPV generated
• Results of study presented in a final report
• Tool for MnDOT use to guide future actions
• Allows MnDOT to compare costs of different actions
Replacement Options
Road User Costs

- Model based on user costs provided by MnDOT
- Most recent available AADT used
- Assumed 0.25% growth rate per MnDOT
- QuickZone 2.0 program used for modeling
Replacement & Rehab Scenarios

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Replace Main Span</th>
<th>Replace Approaches</th>
<th>Rehabilitation Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Year 15</td>
<td>Year 15</td>
<td>NA</td>
</tr>
<tr>
<td>2</td>
<td>Year 15 Cable Stay</td>
<td>Year 25</td>
<td>NA</td>
</tr>
<tr>
<td>3</td>
<td>Year 15: Network Arch</td>
<td>Year 25</td>
<td>NA</td>
</tr>
<tr>
<td>4</td>
<td>Year 15: Cable Stay</td>
<td>Year 30</td>
<td>Year 15: Mill/Overlay Approaches</td>
</tr>
<tr>
<td>5</td>
<td>Year 15: Network Arch</td>
<td>Year 30</td>
<td>Year 15: Mill/Overlay Approaches</td>
</tr>
<tr>
<td>6</td>
<td>Year 15: Cable Stay</td>
<td>Year 40</td>
<td>Year 15: Re-deck Approaches</td>
</tr>
<tr>
<td>7</td>
<td>Year 15: Network Arch</td>
<td>Year 40</td>
<td>Year 15: Re-deck Approaches</td>
</tr>
</tbody>
</table>
Replacement & Rehab Scenarios (Cont)

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Replace Main Span</th>
<th>Replace Approaches</th>
<th>Rehabilitation Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Year 25</td>
<td>Year 25</td>
<td>NA</td>
</tr>
<tr>
<td>9</td>
<td>Year 25: Cable Stay</td>
<td>Year 40</td>
<td>Year 25: Re-deck Approaches</td>
</tr>
<tr>
<td>10</td>
<td>Year 25: Network Arch</td>
<td>Year 40</td>
<td>Year 25: Re-deck Approaches</td>
</tr>
<tr>
<td>11</td>
<td>Year 30</td>
<td>Year 30</td>
<td>Year 15: Mill/Overlay Entire Bridge and Truss Upgrades</td>
</tr>
<tr>
<td>12</td>
<td>Year 40</td>
<td>Year 40</td>
<td>Year 15: Re-deck Entire Bridge and Truss Upgrades</td>
</tr>
<tr>
<td>YEAR</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>SCENARIO 1</td>
<td>MAINTENANCE & REHAB</td>
<td>COMPLETE REPLACEMENT (CABLE-STAYED)</td>
<td>MAINTENANCE & REHAB</td>
</tr>
<tr>
<td>SCENARIO 2</td>
<td>MAINTENANCE & REHAB</td>
<td>REPLACE MAIN SPAN (CABLE-STAYED)</td>
<td>MAINTENANCE & REHAB</td>
</tr>
<tr>
<td>SCENARIO 3</td>
<td>MAINTENANCE & REHAB</td>
<td>REPLACE MAIN SPAN (NETWORK ARCH)</td>
<td>MAINTENANCE & REHAB</td>
</tr>
<tr>
<td>SCENARIO 4</td>
<td>MAINTENANCE & REHAB</td>
<td>REPLACE MAIN SPAN (CS, MAG APPROACHES)</td>
<td>MAINTENANCE & REHAB</td>
</tr>
<tr>
<td>SCENARIO 5</td>
<td>MAINTENANCE & REHAB</td>
<td>REPLACE MAIN SPAN (NA, MAG APPROACHES)</td>
<td>MAINTENANCE & REHAB</td>
</tr>
<tr>
<td>SCENARIO 6</td>
<td>MAINTENANCE & REHAB</td>
<td>REPLACE MAIN SPAN (CS)</td>
<td>MAINTENANCE & REHAB</td>
</tr>
<tr>
<td>SCENARIO 7</td>
<td>MAINTENANCE & REHAB</td>
<td>REPLACE MAIN SPAN (NA)</td>
<td>MAINTENANCE & REHAB</td>
</tr>
<tr>
<td>SCENARIO 8</td>
<td>MAINTENANCE & REHAB</td>
<td>COMPLETE REPLACEMENT (CABLE-STAYED)</td>
<td>MAINTENANCE & REHAB</td>
</tr>
<tr>
<td>SCENARIO 9</td>
<td>MAINTENANCE & REHAB</td>
<td>REPLACE MAIN SPAN (CS)</td>
<td>MAINTENANCE & REHAB</td>
</tr>
<tr>
<td>SCENARIO 10</td>
<td>MAINTENANCE & REHAB</td>
<td>REPLACE MAIN SPAN (NA)</td>
<td>MAINTENANCE & REHAB</td>
</tr>
<tr>
<td>SCENARIO 11</td>
<td>MAINTENANCE & REHAB (TRUSS UPGRADES AND FULL BRIDGE MILL & OVERLAY IN YEAR 15)</td>
<td>COMPLETE REPLACEMENT (CABLE-STAYED)</td>
<td>MAINTENANCE & REHAB</td>
</tr>
<tr>
<td>SCENARIO 12</td>
<td>MAINTENANCE & REHAB (TRUSS UPGRADES AND FULL BRIDGE REDCKING IN YEAR 15)</td>
<td>COMPLETE REPLACEMENT (CABLE-STAYED)</td>
<td>MAINTENANCE & REHAB</td>
</tr>
</tbody>
</table>
Scenario Cost Comparison

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Maintenance Costs (2016 $000s)</th>
<th>Rehabilitation Costs (2016 $000s)</th>
<th>Replacement Costs (2016 $000s)</th>
<th>Road User Costs (2016 $000s)</th>
<th>Salvage Value (2016 $000s)</th>
<th>Total Cost Estimate (2016 $000s)</th>
<th>Total Cost Estimate (NPV $000s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$13,405</td>
<td>$36,290</td>
<td>$230,978</td>
<td>$80,630</td>
<td>$(173,234)</td>
<td>$188,070</td>
<td>$193,071</td>
</tr>
<tr>
<td>2</td>
<td>$17,875</td>
<td>$61,940</td>
<td>$222,766</td>
<td>$123,502</td>
<td>$(179,470)</td>
<td>$246,614</td>
<td>$219,632</td>
</tr>
<tr>
<td>3</td>
<td>$17,875</td>
<td>$61,940</td>
<td>$201,653</td>
<td>$87,146</td>
<td>$(163,635)</td>
<td>$204,979</td>
<td>$182,724</td>
</tr>
<tr>
<td>4</td>
<td>$21,595</td>
<td>$65,730</td>
<td>$222,766</td>
<td>$125,422</td>
<td>$(185,667)</td>
<td>$249,846</td>
<td>$210,670</td>
</tr>
<tr>
<td>5</td>
<td>$21,595</td>
<td>$65,730</td>
<td>$201,653</td>
<td>$89,616</td>
<td>$(169,832)</td>
<td>$208,762</td>
<td>$174,192</td>
</tr>
<tr>
<td>6</td>
<td>$28,185</td>
<td>$125,630</td>
<td>$222,766</td>
<td>$130,069</td>
<td>$(198,062)</td>
<td>$308,588</td>
<td>$235,567</td>
</tr>
<tr>
<td>7</td>
<td>$28,185</td>
<td>$125,630</td>
<td>$201,653</td>
<td>$94,963</td>
<td>$(182,227)</td>
<td>$268,204</td>
<td>$199,630</td>
</tr>
<tr>
<td>8</td>
<td>$23,315</td>
<td>$73,840</td>
<td>$230,978</td>
<td>$87,073</td>
<td>$(196,332)</td>
<td>$218,875</td>
<td>$189,835</td>
</tr>
<tr>
<td>9</td>
<td>$37,195</td>
<td>$158,190</td>
<td>$222,766</td>
<td>$134,502</td>
<td>$(207,944)</td>
<td>$344,709</td>
<td>$243,601</td>
</tr>
<tr>
<td>10</td>
<td>$37,195</td>
<td>$158,190</td>
<td>$201,653</td>
<td>$97,762</td>
<td>$(189,998)</td>
<td>$304,802</td>
<td>$214,429</td>
</tr>
<tr>
<td>11</td>
<td>$32,590</td>
<td>$85,150</td>
<td>$230,978</td>
<td>$89,492</td>
<td>$(207,880)</td>
<td>$230,330</td>
<td>$182,875</td>
</tr>
<tr>
<td>12</td>
<td>$44,340</td>
<td>$168,720</td>
<td>$230,978</td>
<td>$95,860</td>
<td>$(230,978)</td>
<td>$308,920</td>
<td>$211,922</td>
</tr>
</tbody>
</table>
Risk Mitigation
Thank you!

Perry Collins, P.E.
Perry.Collins@state.mn.us
218-725-2827

Keith Ramsey, P.E.
ramseykl@pbworld.com
737-703-3867