Changes in renal laboratory markers and bone mineral density in treatment-naïve HIV-1-infected adolescents initiating INSTI-based single-tablet regimens containing tenofovir alafenamide (TAF) or tenofovir disoproxil fumarate (TDF)

Hilda Kizito¹, Aditya Gaur², Wasana Prasitsuebsai³, Natella Rakhmanina⁴, Kulkanya Chokephaibulkit⁵, Jan Fourie⁶, Linda-Gail Bekker⁷, Yongwu Shao⁸, Sean Bennett⁸, Erin Quirk⁸

¹Joint Clinical Research Center, Kampala, Uganda; ²St. Jude Children's Research Hospital, USA; ³HIV: Netherlands Australia Thailand Research Collaboration, Bangkok, Thailand; "George Washington University School of Medicine, Washington DC, USA; ³Simily Hospital, Mahidd University, Bangkok, Thailand; "North West University South Africa; "Desmond Tutu HIV Centre, University of Cape Town, South Africa; "Giead Sciences, Foster Chy, CA, USA

Australasian HIV & AIDS Conference 2015 September 16 - 18, 2015 Brisbane, Australia

Tenofovir Alafenamide (TAF, GS-7340) Novel Prodrug of Tenofovir

 90% lower TFV levels minimizes renal and bone effects while maintaining high potency for suppressing HIV

1. Lee W et. Antimicr Agents Chemo 2005;49:1898-906;2. Birkus G et al. Antimicr Agents Chemo 2007;51:543-50; 3. Babusis D, et al. Mol Pham 2013;10:459-68; 4. Ruane P, et al. J Acquir Immune Defic Syndr 2013;63:449-55;5. Sax P, et al. JAIDS 2014;2014;67:52-8.6. Sax P, et al. Jancer 2011;56:9769;61;5

Disclosure of Interest Statement:

- Study 106 and 112 are Gilead Sciences sponsored Phase II studies
- Dr. Prasitsuebsai has received funding from, acted as an advisor for and/or participated in clinical research for: Gilead Sciences, Janssen, Merck, Bristol Myers Squibb ViV Healthcare, Abbvie

Background: E/C/F/TAF and E/C/F/TDF

- E/C/F/TDF (commercially available as Stribild) and E/C/F/TAF (not commercially available yet) are single pill formulations that both contain elvitegravir (EVG) 150 mg, cobicistat (COBI) 150 mg, and emtricitabine (FTC) 200 mg
 - E/C/F/TAF contains TAF 10 mg
 - E/C/F/TDF (Stribild) contains TDF 300 mg
- Two phase 3 double blind adult studies¹ comparing E/C/F/TAF to E/C/F/TDF demonstrated
 - Noninferior efficacy of E/C/F/TAF
 - Significantly reduced renal and bone effects with E/C/F/TAF
- Two single-arm open-label studies^{2,3} of E/C/F/TAF and E/C/F/TDF conducted in treatment-naïve adolescents have shown
 - These STRs are well tolerated
 - Plasma levels of all components are similar to those in adults

1. Sax P, et al. Lancet 2015;385:2606-15; 2. Gaur A, et al. CROI 2014. Abstract 909; 3. Kizito H, et al. CROI 2015. Abstract 953.

Methods

- Cross-study comparison of 2 ongoing open-label, single-arm studies in treatment-naïve adolescents
 - Study 292-0106: E/C/F/TAF administered for 48 weeks (N=50)
- Study 236-0112: E/C/F/TDF administered for 48 weeks (N=50)
- Primary endpoint: safety
- Secondary endpoint: viral suppression
- For both studies key inclusion/exclusion criteria:
- Age ≥12 to < 18 years</p>
- Weight >35 kg
- HIV-1 RNA >1000 copies/mL
- No prior ARV therapy
- CD4 count >100 cells/mm³

Study Assessments and Analysis Methods

- Safety assessments
 - Adverse events and laboratory assessments: hematology, chemistry, renal tubular protein biomarkers
 - Dual X-ray absorptiometry (DXA) of spine and total body less head (TBLH) at baseline and every 24 weeks
- Efficacy assessments
- HIV-1 RNA (TaqMan 2.0) and CD4 count at every visit
- Resistance testing in cases of confirmed virologic failure (HIV-1 RNA >400 copies/mL)
- Statistical methods
 - Cross-calibration between DXA scanner types (Hologic and Lunar)
 Calculation of standard and height-adjusted Z-scores and predicted BMD change
 - Snapshot algorithm for HIV-1 RNA < 50 copies/mL at Week 24

Demographics and Baseline Characteristics

		E/C/F/TAF n=50	E/C/F/TDF n=50	p-value
Age	Years, median (range)	15 (12-17)	16 (12-17)	0.040
Sex	Male, n (%)	22 (44)	35 (70)	0.009
Country of Origin	Uganda, n (%)	30 (60)	0	
	South Africa	3 (6)	22 (44)	
	Thailand	6 (12)	14 (28)	
	United States	11 (22)	14 (28)	
eGFR (Schwartz)	mL/min/1.73 m ² , median	156.0	139.5	0.082
Spine BMD	g/cm ² , median	0.78	0.93	0.027
	Standard Z-score	-1.30	-0.72	0.20
	Height-adjusted Z-score	-0.54	+0.09	0.015

Baseline Disease Characteristics

		E/C/F/TAF n=50	E/C/F/TDF n=50	p value
HIV-1 RNA	Log ₁₀ copies/mL, mean (SD)	4.62 (0.59)	4.60 (0.55)	0.98
	>100,000 copies/mL, n (%)	11 (22)	10 (20)	0.81
CD4 Count	Cells/µL, median (Q1, Q3)	456 (332, 574)	402 (298, 486)	0.060
	<200 cells/µL, n (%)	4 (8)	2 (4)	
Mode of Infection	Vertical transmission, n (%)	32 (64)	17 (34)	
	Heterosexual sex	12 (24)	12 (24)	
	Homosexual sex	8 (16)	19 (38)	

Patient Disposition

Efficacy: Overview

No emergent resistance

Safety Overview

- No deaths or adverse events (AEs) leading to treatment discontinuation
- Most AEs mild or moderate and unrelated to study treatment
- No cases of proximal renal tubulopathy or Fanconi syndrome
- Serious adverse events:

E/C/F/TAF: 5 SAEs in 4 patients	E/C/F/TDF: 5 SAEs in 4 subjects		
Urinary retention, neuropathic pain, constipation	 Suicide gesture Shigella dysentery, acute renal injury 		
Conduct disorder, polysubstance abuse, bipolar disorder	Pre-term labor		
Intermediate uveitis, visual disorder*	Immune reconstitution inflammatory syndrome		
1) Substance abuse 2) Suicidal ideation, suicide attempt	Acute asthma exacerbation		

*Only treatment-related SAE and resolved without E/C/F/TAF interruption

Creatinine and Cystatin C by Visit

Median change in Cr (mg/dL) at Week 24: E/C/F/TAF +0.08, E/C/F/TDF +0.08

Median change in eGFR (mL/min/1.73 m²) at Week 24: E/C/F/TAF -15.0, E/C/F/TDF -14.0
 Slight decrease in Cystatin C (not affected by COBI) in both groups

12

14

Changes in Spine Bone Mineral Density

Changes in Spine Bone Mineral Density

Changes in Spine Bone Mineral Density

Conclusions

While being cognizant that this was a cross-study comparison and there were differences (age, gender, geography, mode of transmission) at baseline, we note

- Both groups exhibited rapid virologic response and high rates of virologic success at Week 24, with no emergent resistance
- E/C/F/TAF and E/C/F/TDF generally well tolerated
- Small observed increases in serum Cr, consistent with known effect of cobicistat in adults
- = E/C/F/TAF decreased renal biomarkers, similar to that observed in adult E/C/F/TAF phase 3 studies
- = E/C/F/TAF group had increased median spine BMD at Week 24 (+1.3%) compared with a decrease (-1.0%) in E/C/F/TDF group
- These data support use of both regimens in treatment-naïve adolescents and suggest potential renal and bone safety advantages of TAF

Acknowledgments

Principal Investigators:

H Kizito, A Gaur, W Prasitsuebsai, N Rakhmanina, M Rassool, R Chakraborty, C Orrell, P Kosalaraksa, W Luesomboon, J Batra, J Fourie, A Violari, R Kaplan, R Strehlau, G Cotton, G Latiff, K Chokephaibulkit, T Bunupuradah, J Ananworanich, J Burack, W Borkowsky, J Chen, D Futterman, C Rodriguez, J Schneider

The Gilead team:

17

D Podesta, M Hottman, S Goudar, M Myers, Y-P Liu, Y Shao, K Hasegawa, S Fong-Cohen, E Doyle, D Porter, A Coluci, S Bennett, M Fordyce, E Quirk, A Cheng

Our patients and their families

18

QUESTIONS?