Approaches to Anemia 2017 Pediatric Symposium

Neha Vaghasia, MD Department Pediatrics Hematology and Oncology Kaiser Fontana Medical Center

Disclosures

I have no disclosures

Objectives

- Approach to anemia in the pediatric patient
- Pertinent issues related to history and physical exam, laboratory work up, methods for classifying anemia
- Different ways of thinking of anemia
- Review of differential diagnosis

Outline

- Definition of Anemia
- Diagnosing Anemia
- Morphologies of Anemia
 - Microcytic anemia
 - Normocytic anemia
 - Macrocytic anemia

Anemia

• Definition:

Reduction in red cell mass OR hemoglobin concentration

Age	Hgb (g/dL)		Hct (%)		RBC (10 ¹² /L)		MCV (fL)		MCH (pg)		MCHC (g/dL)	
	Mean		Mean	-2SD	Mean	-2SD	Mean	-2SD	Mean	-2SD	Mean	-2SD
Birth (cord)	16.5	13.5	51	42	4.7	3.9	108	98	34	31	33	30
1-3 days	18.5	14.5	56	45	5.3	4.0	108	95	34	31	33	29
1 week	17.5	13.5	54	42	5.1	3.9	107	88	34	28	33	28
2 weeks	16.5	12.5	51	39	4.9	3.6	105	86	34	28	33	28
1 month	14.0	10.0	43	31	4.2	3.0	104	85	34	28	33	29
2 months	11.5	9.0	35	28	3.8	2.7	96	77	30	26	33	29
3-6 months	11.5	9.5	35	29	3.8	3.1	91	74	30	25	33	30
0.5-2 years	12.0	10.5	36	33	4.5	3.7	78	70	27	23	33	30
2-6 years	12.5	11.5	37	34	4.6	3.9	81	75	27	24	34	31
6-12 years	13.5	11.5	40	35	4.6	4.0	86	77	29	25	34	31
12-18 years Female Male	14.0	12.0 13.0	41 43	36 37	4.6 4.9	4.1 4.5	90 88	78 78	30 30	25 25	34 34	31 31
18-49 years Female Male	14.0	12.0 13.5	41 47	36 41	4.6	4.0	90 90	80 80	30 30	26 26	34 34	31 31

Anemia

• How does one become anemic?

- Increased hemoglobin loss (usually bleeding)
- Decreased hemoglobin production
- Increased destruction of RBC

Pathophysiology of Anemia

• Decreased production

- Substrate deficiency
 - Iron deficiency, lead toxicity, vitamin deficiency
- Mechanical interference
 - Leukemia, lymphoma, fibrosis, other oncology
- Bone marrow failure
- Ineffective erythropoiesis
 - Renal failure

Pathophysiology of Anemia

Increased destruction

- Intrinsic red cell factors
 - Membrane defects
 - Hemoglobinopathies
 - Enzyme defects
- Extrinsic factors
 - Immune mediated
 - Non-immune
- Blood loss
 - Acute
 - Chronic

Diagnosing Anemia

-HISTORY HISTORY HISTORY! -Physical & Laboratory Values

Use this information to focus on diagnosis and diagnostic considerations to guide further testing and confirm etiology

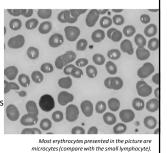
Evaluation

- Symptoms
- Past Medical History
- Gender, Race/Ethnicity
- Drug and toxin exposure
- Family History
- Dietary history
- Developmental history

Physical Exam

- Skin- jaundice, pale, uclers
- Facies-frontal bossing
- Mouth-glossitis
- Chest-shield chest
- Hands-triphalangeal thumbs, spoon nails,
- Spleen –enlargement

Laboratory


- CBC
- Reticulocyte count
- Iron studies
- Blood smear

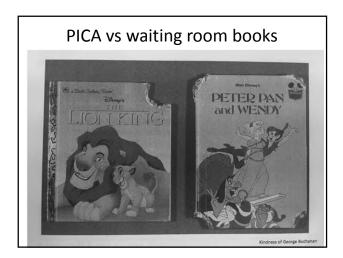
Histology of Anemia

- Morphologic Classification of Anemias
 - Macrocytic
 - Normocytic, normochromic
 - Microcytic, hypochromic

Hypochromic Microcytic Anemia

- Iron deficiency (nutritional, chronic blood loss)
- Chronic lead poisoning
- Thalassemia syndromes
- Sideroblastic anemias
- Chronic inflammation
- Congenital hemolytic anemias with unstable hemoglobin

Nathan and Oski, 7th edition


Substrate Deficiency

- Most common nutritional deficiency in children – <u>Iron Deficiency- Microcytic Anemia</u>
- #1 cause is inadequate intake
 - Most common in <2 years old
 - Associated with history of excessive milk intake

Iron Deficiency Anemia

- Blood loss
 - GI
 - Mucosal (nosebleeds)
 - Lungs
 - Menstrual
 - Renal
- Impaired absorption
 - Inflammation
 - Infection/H Pylori
 - Receptor defects

Iron Deficiency Labs

- \downarrow MCV
- \downarrow MCH
- \downarrow MCHC
- ↑ RDW
- \downarrow -to-normal retic count
- ↓ serum Fe
- ↓ transferrin
- \downarrow Fe saturation • \downarrow Hgb A2 (normal ~2.5%) • \uparrow TIBC
 - ↓ ferritin

Oral supplementation

- Iron salts:
- Ferrous sulfate ~20% - Lots of different preparations
- Ferrous gluconate ~12% elemental iron
- Ferrous fumarate ~33% elemental iron

Oral supplementation

- Dose:
 - 3-6 mg/kg of elemental iron daily Depending on severity
- Results:

 - Peak reticulocytosis 5-10 days
 Hgb increases by 0.25-0.4 g/dL/day = 1g/dL in 4wk
 - (or Hct by 1% per day)
- Cons:
 - lengthy course (3+ months),
 - renging course (s+ months),
 troublesome dosing, multiple Rx refills forgetting, refusing
 adverse effects (real or perceived)

Parenteral/IV supplementation

- Indications:
 - Poorly tolerated oral iron
 - GI absorption of oral iron is compromised
 - Rapid replacement of iron stores needed
 - EPO therapy

CONS: weekly infusions, weekly PIV placements, time off from work/school, underlying problem not addressed

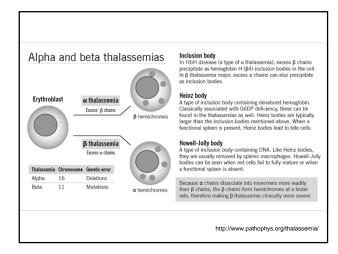
Parenteral supplementation

• Results:

- Peak reticulocytosis in 10 days
- Complete correction 4-6 weeks
- Hct rises enough in 1-2 weeks for symptom relief

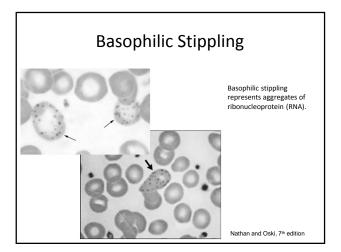
Altered Mental and Motor Development

- Lower mental and/or psychometric test scores and altered affect/behavior in anemic infants and school age children
- Correlation of iron status with IQ
- Reversal of anemia with oral iron does not always normalized mental and motor development, either immediately or years later


Doom JR et al, Curr Pediatr Rep (2014) 2:291-298

Mentzer Index

- Useful for deciphering iron deficiency anemia from beta-thalassemia
- MI = MCV/RBC count
- MI <13 = Thalassemia
- MI >13 = Iron deficiency


Thalassemia

- Normal Adult hemoglobin is a tetramer made up of 2 alpha and 2 beta subunits
- Alpha globin gene is on chromosome 16 and found in 2 pairs = 4 genes total
- Beta globin gene is a single copy gene on chromosome 11= 2 genes total
- More genes missing = more severe clinical course

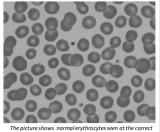
Compare: Lead poisoning

- Basophilic stippling
- Serum iron elevated
- Elevated serum lead level

Lead Poisoning

- Blocks placement of iron into heme
- May cause neurological damage and anemia
- Usually related to lead-based paints and industrial exposures
- Test for a SERUM LEAD LEVEL
- Treatment chelation

Iron Deficiency and Lead Poisoning

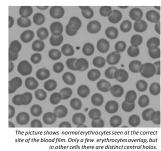

- Dietary Iron Deficiency \rightarrow PICA
- PICA→ lead ingestion
- Iron deficiency → increased lead absorption from intestine (10x in animal studies)
- Causes basophillic stippling
- Does NOT cause microcytic anemia (secondary to iron deficiency)

Microcytic Anemia Take Home

- Past medical history and family history
- CBC, retic, ferritin, Hemoglobin Fractionation
- Mentzer Index
- Iron deficiency Anemia
 - Supplement 3-6mg/kg/day BID or TID
 - Treat underlying cause!

Normocytic Anemia

- Congenital hemolytic anemias – Hemoglobin mutants
 - Hgb SS or Hg SC
 - Red cell enzyme defects
 Hereditary spherocytosis
 - Hereditary eliptocytosis
 - Disorders of RBC membrane
 G6PD deficiency
 - Pyruvate kinase deficiency



The picture shows normal erythrocytes seen at the correct site of the blood film. Only a few erythrocytes overlap, but in other cells there are distinct central halos.

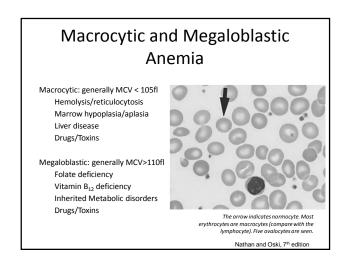
Nathan and Oski, 7th edition

Normocytic Anemia

- Acquired hemolytic anemias
 Antibody-mediated
 - Microangiopathic
 - Secondary to acute infections
- Acute blood loss
- Splenic sequestration
- Chronic renal disease
- Hyper or hypothyroid

Nathan and Oski, 7th edition

Red Cell Membrane disorders


- Hereditary Spherocytosis
- Many others with cell membrane or cytoskeleton defects
- Osmotic Fragility for testing
- Clinical Presentation (hemolytic anemia): pallor, jaundice, fatigue, splenomegaly, dark urine, gallstones

RBC Enzyme Disorders

- Enzymes essentially protect from oxidative damage
- G6PD deficiency
 - X linked
 - Decreased production of NADPH
 - Hemolysis in response to oxidative stress
 - Avoid fava beans, napthalene
 - G6PD.org website

Normocytic Anemia Take Home

- Birth history, family history, past medical history
- Enzyme and membrane defects will have jaundice at birth, gallstones in family members
- CBC, retic, Osmotic Fragility
- Hemoglobin Fractionation for sickle cell

Folate and B12 Deficiency

- Lab findings:
 - Macrocytosis, low retic count
 - Mild thrombocytopenia/neutropenia
 - Hypersegmented neutrophils
 - Megaloblastic changes in bone marrow
- Clinical Findings:
 - Jaundice (ineffective erythropoiesis)
 - Smooth tongue
 - Neurological findings (B12 only): motor deficits, ataxia, seizures, depression, psychosis→ due to degeneration of posterior columns of spinal cord

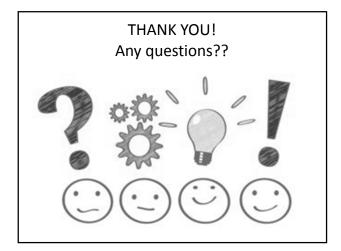
Folate Deficiency

- Decreased intake
 - Malnutriotion, unpasteurized goat milk, sick premie
- Intestinal Malabsorption
- Increased requirements
- Pregnancy, chronic hemolytic anemia (rare)
- Hereditary

Folate Facts

- Absorption in proximal ileum
- Dietary sources
 - Fresh fruits and leafy veggies
 - Meat
 - Cow and human milk
 - Fortified cereals and bread

B12 (Cobalamine) deficiency


- Reduced Intake
 - Vegan, breast feeding infant of B12 def mother
- Decreased absorption
 - Reduced intrinsic factor (IF) (pernicious anemia)
- Malabsorption despite normal IF
 - Ileal resection, IBD
- Increased intestinal utilization
 - − Blind loop/statis → bacterial overgrowth
 - Fish tapeworm infection

Macrocytic/Megaloblastic Anemia Take Home

- History is important: dietary, surgical, inflammatory etc
- Have suspicion for B12 and folate deficiency in malnourished patients, GI surgery patients, IBD patients
- Labs: CBC, retic, folate level, B12 level, hemoglobin fractionation (r/o Diamond Blackfan Anemia)

Summary

- History
- Physical exam
- Use your CBC to help guide your thinking!
- Consider hemoglobin fractionation in appropriate settings
- Iron deficiency is the most common form of pediatric anemia→ encourage compliance, fix underlying cause

