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Abstract -- Modern microprocessor-based IEDs offer many 

functions, which are underutilized by the industry.  This paper 
will discuss using IED functionality to fully monitor the 
protection and control system, which will identify problems 
within the system before they manifest themselves by miss-
operation.  This paper will also discuss the use of these 
monitoring systems to lengthen the time intervals required for 
periodic testing of the protection and control system.  Some of 
the monitoring techniques to be discussed include:  trip coil, 
close coil, and lockout relay monitoring, usage of IED self-test 
alarm contacts, instrument transformer failure detection 
using analog GOOSE messaging & other level 
detection/comparison methods, breaker restrike detection, 
station battery monitoring, oscillography cross-triggering, 
automated contact input & output testing and natural testing 
by event analysis. 

INTRODUCTION 

Modern microprocessor based IEDs offer many 
advantages over their electro-mechanical counterparts.  
One of these advantages is the ability to monitor the IED 
health and the health of the protection and control system 
and raise an alarm if any monitored function is amiss.  This 
ability to monitor the protection and control system gives 
the utility the capability to continuously insure the health 
of the protection and control system.  The only way to 
insure confidence in an unmonitored protection and 
control system is to test the system.  This includes not only 
testing the protective relay functions, but also testing the 
overall protection and control system. 

As utilities look for low-hanging fruit to reduce their 
overhead expenses, the maintenance and testing of the 
protection system is an obvious target.  The North 
American Reliability Council (NERC) has recognized that the 
reliability of an individual protection and control system 
can have dramatic effects on the overall electrical grid.  To 
increase the reliability of the protection and control 
systems that could impact the grid, NERC has enacted 
reliability standards that ensure protection systems are 
maintained and tested [3].  PRC-005 defines requirements 
that NERC has enacted to ensure that protection systems 
are maintained.  PRC-005 is under revision and the 
revisions to PRC-005, while maintaining the reliability of the 
electrical systems, gives utilities opportunities to utilize 

monitoring of the protection and control system to reduce 
maintenance costs.  The primary mechanism that utilities 
can utilize to lower their maintenance costs is to increase 
the time interval required to test their protection systems.  
The draft version of PRC-005 recognizes that a fully 
monitored protection system does not need to be tested 
as frequently as an unmonitored protection system. 

PRC-005, at the time of this writing, is in draft form.  The 
draft document makes recommendations on time based 
maintenance intervals and allows a longer interval 
between testing for an unmonitored system verses a 
monitored system.  For protective relays, the requirement 
for an unmonitored system is once every six years, while 
the requirement for fully monitored systems is once every 
twelve years.  For a system to be considered fully 
monitored, it must meet the following minimum 
requirements [3]:  

• Internal self diagnosis and alarming 
• Voltage and current waveform sampling three 

or more times per power cycle and conversion 
of the samples to numeric values for 
measurement calculations by microprocessor 
electronics that are also performing self 
monitoring and alarming. 

• Alarming for power supply failure. 
 
For protective relays meeting the requirements above, 

the testing requirements of every twelve years are:  
verifying settings are as specified, verifying operation of 
the relay inputs and outputs that are essential to the 
proper function of the protection system, and verifying 
acceptable measurement of power system input values. 

The testing requirements above can be reduced to: 
verifying only the unmonitored relay inputs and outputs 
that are essential to proper functioning of the protection 
system, if the relay meets the requirements above and: 

• AC measurements are continuously verified by 
comparison to an independent ac 
measurement source, with alarming for 
excessive error. 

• Some or all binary or status inputs and control 
outputs are monitored by a process that 
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breaker is open nor monitoring the close circuit when the 
breaker is closed.  For the trip circuit, the voltage monitor 
will be “on” or “Von” when the breaker is closed and 
indicates a healthy circuit.  If the voltage is absent when 
the breaker is closed, an alarm will be given for a faulty trip 
circuit (i.e. “Voff”).  For the close circuit, the voltage monitor 
will be “on” or “Von” when the breaker is open and 
indicates a healthy circuit.  If the voltage is absent when 
the breaker is open, an alarm will be given for a faulty 
close circuit (i.e. “Voff”).  Similarly an “open circuit” alarm 
can be created for the lockout relay circuitry (Figure 3) by 
monitoring the voltage across the circuit and alarming 
when the voltage is “off” or not present. 

INSTRUMENT TRANSFORMER VERIFICATION 
 

PRC-005 requires testing of the voltage and current 
sensing devices without monitoring every twelve years.  
Devices that are monitored have no periodic maintenance 
interval specified and monitored is defined by:  “Voltage 
and Current Sensing device connected to microprocessor 
relays with AC measurements are continuously verified by 
comparison of sensing input value as measured by the 
microprocessor relay to an independent ac measurement 
source, with alarming for unacceptable error or failure” [3].   

Most critical protection systems have either redundant 
protective relaying or backup protective relaying.  
Typically, each set of relays is sourced from different 
instrument transformers.  This type of redundancy is 
shown in Figure 4 where an “A” and “B” set relay protect 
each line.  In this scheme, each relay is sourced from 
different three-phase current transformers.  The “A” set 
relay could be configured to pass the RMS value of the 
current readings from the CTs that it is connected to, to the 
“B” set relay using an IEC61850 Analog GOOSE message 
and vice versa.  The “A” and “B” set relays would use a 
comparator function to compare two RMS values and 
operate if the difference between the values is greater 
than a setting.  The comparator could be used to raise an 
alarm if its RMS measured current is significantly different 
than the IEC61850 Analog GOOSE message it receives 
from the “A” set relay of RMS current.  Since this is an 
alarm function, the time delay on the comparator could be 
set to accommodate any latency of the communication 
channel.  These alarms would be blocked during fault 
conditions.  This type of alarming should meet the 
requirement that the AC measurements are continuously 
verified by comparison with alarming for error or failure.  
This would also allow verification of correct CT and PT 
settings in each relay. 

Monitoring the potential transformers in Figure 4 
presents a challenge since the “A” set and “B” set relays 
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52-2

52-3

Line 1

Line 2

IED-A-Line 1
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Figure 4 – Breaker and a Half Scheme 

 
are both connected to the same potential transformers.  In 
this instance, as long as the breaker 52-2 is closed, the 
voltage on the Line 1 relays should be the same as the 
voltage on the Line 2 relays.  The Line 1 relays could send 
the RMS values of voltage to the Line 2 relays via an 
Analog IEC61850 GOOSE message.  The comparator in the 
Line 2 relays could then be set to raise an alarm if the 
measured voltage values are different than the received 
RMS value (via Analog IEC61850 GOOSE) from Line 1 relay.  
These voltage comparison alarms would be blocked during 
fault conditions, 

The microprocessor-based relay can also be used to 
monitor Capacitive Coupled Voltage Transformers (CCVTs).  
CCVT manufaturers state that if any phase voltage angle 
of the CCVT changes or drifts by 5 to 10 degrees it could be 
an indication of a CCVT problem brewing.  Similarly, if any 
voltage magnitude changes by 5-10%, the CCVT could be 
experiencing a problem and the utility needs to  
investigate further.  Figure 5 shows the CCVT alarm logic 
that can be created within the protective relay. 

Another monitoring method is to detect voltage 
transformer fuse failure (or VTFF) and raise an alarm 
and/or block elements that may operate incorrectly for a 
full or partial loss of AC potential caused by one or more 
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OSCILLOGRAPHY CROSS TRIGGERING 
 

Modern IEDs have the ability to record oscillography 
data and event data inside the relay.  One of the most 
useful methods of testing is to analyze operations of the 
protective system to insure that the protective system 
operated as intended and identify and correct near misses.  
This method can be referred to as “natural testing”.   When 
using redundant relaying of different manufacturer as in 
Figure 4, an inappropriate operation or inappropriate non-
operation often only involves one of the relays.  It is 
impossible to analyze the forensics in the non-operating 
relay if the oscillography is not triggered and oscillography 
is typically only triggered on a trip.  Therefore, it is 
necessary to cross-trigger the oscillography, so that a trip 
in one relay causes all the relays in the station to also 
trigger oscillography (i.e. an “oscillography trip bus” or 
station digital fault recorder).  This can be accomplished 
with contact outputs and a wired oscillography trigger, but 
a better implementation of this type of multi-cast message 
would be to cross trigger with IEC61850 GOOSE messages. 

The event shown in Figure 10 is an example of analysis 
using cross triggering.  This event comes from a 
transmission line with redundant relaying.  In this event, 
the B and C phase CCVTs developed a problem and the B-
C phase voltage presented to the relay would have been 
zero.  The “A” set relay operated appropriately, but not as 
intended since it was an undesired trip.  With the voltages 
presented to the relay, the “A” set relay operated correctly.  
The “B” set relay did not operate for this event. 

 

 
Figure 10 – Cross Triggered Event 

 
In the event of Figure 10, the “B” set relay was cross 

triggered and the event could be analyzed restoring 

confidence in the “B” set relay.  The analysis revealed that 
the phase distance element was supervised by a current 
detector and the current level was not above the 
supervision level. 

A second example of natural testing by event analysis is 
shown in the event record of Figure 11.  This record comes 
from the transformer relay of a distribution substation 
where a trip on any feeder breaker triggers oscillography 
on the transformer differential relay.  During this event, 
one of the distribution breakers tripped on a B-phase 
overcurrent.  The transformer had a Delta to Wye phase 
conversion and analysis of the event shows the A-B phase 
current on the transformer primary was correct and the B 
phase current on the transformer secondary was correct.  
Additionally, the oscillography from the distribution relay 
could be merged with the transformer relay oscillography 
to compare the magnitudes and waveforms between the 
two relays.  This analysis verifies the current transformer, 
CT circuits, and the relay current inputs. 

 
 

 
Figure 11 – Transformer Event Record 

 

SETTING COMPARISON 
 

Another beneficial software tool to the utility industry is 
the comparison of settings in the relay “as found” to “as 
left”.  This comparison meets the PRC-005 requirement of 
“verifying settings are as specified“ [3].  The function could 
be automated and provide an alarm if any settings have 
changed. 

ON-LINE  REAL-TIME I/O VERIFICATION 
 

With the use of creative wiring and form C contact 
outputs of the relay, on-line real-time testing can be 
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accomplished for critical or control relay contact outputs.  
Logic can be developed within the relay, to periodically test 
the actual working of an output contact and raise an 
alarm if the contact should fail.  Protective relay trip and 
close outputs can be tested as shown in Figure 12 using 
the current coil monitoring of the relay output contact 
(“Ion”).  For a trip circuit, logic can be developed to quickly 
connect the trip contact to DC battery negative through a 
resistance (such as 1000 Ohms) and energize the form C 
contact within milliseconds (within 2-4ms).  If the contact is 
healthy, the current coil detector will operate (or “Ion”).  If 
the contact does not close or is faulty, the current coil 
detector will not operate and an alarm can be issued.  
Similarly, logic can be developed for the relay close 
contact as shown in Figure 12.   

 

 

Figure 12 – Real Time Trip & Close Relay Contact Output 
Testing 

 
In addition, critical relay contact inputs, such as breaker 

failure initiate, start carrier, etc. can be on-line real-time 
tested by using form A contact outputs of the relay.  Logic 
can be developed to quickly connect the critical input 
contact to the relay and test if it is recognized by the relay.  
Necessary functions that are normally affected by the 
tested input contact would be temporarily disabled during 
the short test period (2-4ms).  Figure 13 shows an example 
of the wiring to automatically test a critical input contact 
of the relay using programmable logic.  The relay could be 
temporarily put into “test mode” such that all relay output 
contacts are disabled temporarily during the input contact 
tests. 

  
Figure 13 – Real Time Testing of Critical Relay Contact 

Inputs 

 

CONCLUSIONS 

 
The flexibility and configurability of today’s 

microprocessor based protective relays allow a utility to 
monitor the protection and control system and identify 
problems within the system before they manifest 
themselves by miss-operation.  With the use of these 
monitoring techniques a utility could lengthen the time 
intervals required for periodic testing of the protection and 
control system.  The monitoring techniques include: trip 
coil, close coil, and lockout relay monitoring, usage of IED 
self-test alarm contacts, instrument transformer failure 
detection using analog GOOSE messaging & other level 
detection/comparison methods, breaker restrike detection, 
station battery monitoring, oscillography cross-triggering, 
and automated contact input & output testing.  The relay 
sequence of event recorder (SOE) can be used to record 
the occurrence and time of these monitoring alarms of the 
protection and control system.  In addition, these 
monitoring techniques increase the reliability of the 
protection and control system and enable the utility to 
have a smarter/intelligent protection and control system. 
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