MEMORY CD4+ T CELLS EXPRESSING HLA-DR CONTRIBUTE TO HIV PERSISTENCE DURING PROLONGED ART

Lee E1,2, Hiener B1,2, Horsburgh B1,2, Bacchetti P3, Shao W4, Boritz E5, Douek D5, Fromentin R6, Liegler T7, Deeks SG7, Hecht FM7, Milush J4, Palmer S1,2

1The Westmead Institute for Medical Research, Westmead, Australia; 2University of Sydney, Sydney Medical School, Sydney Australia; 3Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, United States; 4Leidos Biomedical Research, INC, Frederick National Laboratory for Cancer Research, Frederick, United States; 5Human Immunology Section, Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, United States; 6Department of microbiology, infection and immunology, Université de Montréal, Montreal, Canada; 7Department of Medicine, University of California San Francisco, San Francisco, United States

Background: Most measurements of HIV reservoirs are performed using “resting” CD4+ T cells depleted for cells expressing HLA-DR, which is considered an activation marker. However, the possible role of these cells in HIV persistence during ART is undefined. Here, we examine the contribution of HLA-DR+ CD4+ T cells to HIV persistence after prolonged ART (≥15 yrs).

Methods: Using LTR-specific qPCR, HIV RNA and DNA were quantified in HLA-DR-(resting) and HLA-DR+ CD4+ T cells from 6 participants (P1-P6) on ART (≥15 yrs). Using single-genome/proviral sequencing, we characterized HIV-RNA/DNA (p6-RT) sequences from HLA-DR-, HLA-DR+, central (CM), transitional (TM) and effector (EM) memory CD4+ T cell. Clonal expansions were defined as ≥2 identical sequences in phylogenetic trees.

Results: CD4+ HLA-DR+ and HLA-DR- memory cells contained a median of 3400 and 1000 HIV-RNA copies/million cells; and 36 and 60 HIV-DNA copies/million cells respectively, indicating the HIV transcriptional activity of HLA-DR+ cells is 6-fold higher than HLA-DR-. For one participant treated during acute infection, the amount of defective HIV-DNA and RNA sequences containing stop codons from HLA-DR+ memory T cells was much lower (21% and 0% respectively) than those derived from HLA-DR- memory T cells (50% and 26% respectively). In participants treated during chronic infection, EM more often contained clonally expanded HIV-DNA sequences which were genetically identical to HIV-DNA sequences from HLA-DR+ memory cells (43% P1, 88% P2) than CM and TM (8-18% P1; 8-44% P2; p<0.0001-0.03).

Conclusions: CD4+ memory T cells expressing HLA-DR contain measurable HIV-DNA and HIV-RNA. Furthermore, these cells appear to contain more intact virus in the sequenced region than HLA-DR- memory cells. Therefore, measurements of the HIV reservoir during ART should include memory cells expressing HLA-DR. HLA-DR+ and EM cells had clonal expansions of genetically identical HIV-DNA, suggesting these cell subsets replenish the HIV reservoir through proliferation during prolonged ART.