

Using a Hybrid Cloud approach to achieve
efficiency, flexibility and high utilisation of

your HPC
Antonio Cisternino, Maurizio Davini

What is HPC today?

Model
definition

Code
development

Architecture
definition

Code
optimization

Architecture
optimization

HPC frequently hidden assumptions
 Linear/Polynomial

complexity of
algorithms

 Numerical codes
 Compute-

Communicate ratio
 Problem bigger than

a single system
 Extreme custom

code optimization

Cloud, HPC and the problem size

HPC

Problem requires
multiple nodes

Homogeneous
structure (jobs

and schedulers…)

Mainly in memory

Frequent sync
(order of latency

in
communications)

Cloud

Single node
addressing

multiple problems

Heterogeneous
structure (just

x86…)

Any memory and
disk access
patterns

Communication
may happen even

through L2
incapsulated in L3

Big data

Problemrequires
multiple nodes

Not-so-
homogeneous

structure

Mainly disk bound

Communication is
rare

Flexibility IS often more important…
Python 3 used what fraction? used how many times more?

Time-

used
|- |--- 25% median 75% ---| -|

(Elapsed

secs)
± ± 6× 43× 62× 106× 106×

Java used what fraction? used how many times more?

Time-

used
|- |--- 25% median 75% ---| -|

(Elapsed

secs)
± ± 2× 2× 2× 4× 4×

http://benchmarksgame.alioth.debian.org/play.html#time
http://benchmarksgame.alioth.debian.org/play.html#time

Critical aspects for achieving
flexible HPC

Software stack
 Library dependencies
 Package management (a nightmare): yum,

apt-get, npm, nuget
 Debug/run cycle, staging
 Code and data versioning
 Open source development model is worsening

this scenario
 Security hard to ensure

Code (in)-efficiency
 Experiment:

 Take a 4CPU server S with RAM
 Run CFD workload W on S with MPI multithread
 Run W on S with MPI multiprocess
 Run W on a virtual cluster on S with same resources

and MPI on vSwitch
 Outcome (2010 and 2015):

 Virtual execution lead to a speedup up to 30%

Algorithm complexity

Networking
 East-West traffic
 Low latency
 Topology
 IP Addressing (overlay?)
 Containers
 Data size (i.e. 300GB for a genome, remember?)

Disk size AND performance

Problem size vs. system size

«Problems usually don’t scale up
as hardware, and so you start as
enterprise to become a small
business. Only then you may
realize that the beautiful parallel
something you devised become
useless but it complicates the
architecture»

A.C.
(hey, it’s me :)

HPC and Cloud

Public Cloud HPC (Azure)

Public Cloud HPC (AWS)

Private Cloud (DHCS on prem)

OpenStack?

Containers (Docker)
 Use of container for

deploying different
(potentially
incompatible) software

 Containers come with
less overhead but
networking can be a
nightmare (latency)

 It’s the dawn of
containers stay tuned!

Designing for specific workloads (lot of fun!)
 Design for the

workload (DN, BD,
traditional HPC…)

 It’s not just a matter
of CPU and
interconnectivity

 Dimension
appropriately the
resource usage (bus,
memory, disk,
network)

New horizons

Emerging HUGE problems
 Life sciences
 Big data analytics
 Real time big data analytics
 IoT

Continuous problem solving

Democratizing HPC
 Data centers in a box
 Predefined,

precooked solutions
easily deployable

 Some scenarios (Fog,
IoT) may benefit from
a more distributed
information
processing

Conclusions
 HPC is redefining itself (again)
 Cloud (public or private or hybrid)

+ containers offer viable solutions
for HPC-kind of problems

 Overlap with non-HPC
architectures (i.e. microservices,
distributed IoT)

 Flexibility will be an important
pillar of the HPC in the future

 We accepted that assembly was
low level, it’s time to move on

OpenHPC @ University of Pisa Dell Solution
Center

Antonio Cisternino
Maurizio Davini

IT Center University of Pisa

OpenHPC
 Create a stable environment for testing and validation: The

community will benefit from a shared, continuous integration
environment, which will feature a build environment and source
control; bug tracking; user and developer forums; collaboration tools;
and a validation environment.

 Reduce Costs: By providing an open source framework for HPC
environments, the overall expense of implementing and operating
HPC installations will be reduced.

 Provide a robust and diverse open source software stack: OpenHPC
members will work together on the stability of the software stack,
allowing for ongoing testing and validation across a diverse range of
use cases.

 Develop a flexible framework for configuration: The OpenHPC stack
will provide a group of stable and compatible software components
that are continually tested for optimal performance. Developers and
end users will be able to use any or all of these components
depending on their performance needs, and may substitute their
own preferred components to fit their own use cases.

Why OpenHPC
 Many sites spend considerable effort aggregating a large suite

of open-source projects to provide a capable HPC environment
for their users:
 necessary to obtain HPC focused packages that are either absent or

do not keep pace from Linux distro providers
 local packaging or customization frequently tries to give software

versioning access to users (e.g. via modules or similar equivalent)
 They frequently leverage a mix of external and in-house tools

for:
 provisioning, software installations/upgrades, config management

schemes, and system diagnostics mechanisms.
 although the functionality is similar, the implementations across sites is

often different which can lead to duplication of effort

6

OpenHPC: Early Community Members

OEMs ISV-OSVs HPC Sites

7

Component Overview
SW Block Diagram of Typical HPC System

Operator Interface Applications (not part of t he stack init ially)

F
a
b

ric
 M

g
t

S
yste

m
 D

ia
g

n
o

stic
s

P
ro

visio
n

in
g

S
yste

m
 M

a
n
a
g

e
m

e
n

t

(C
o

n
fig

, In
ve

n
to

ry)

Data

Collection

And

System

Monitors

DB

Schema

Workload

Manager

Optimized

I/O

Libraries
Scalable

Debugging

& Perf

Analysis

Tools

High

Performance

Parallel

Libraries

Software

Development

Toolchain

User Space

Utilities

Scalable

DB

Resource

Mgmnt

Runtimes

I/O

Services

Compiler and

Programming-

Model

Runtimes

Overlay & Pub-Sub Networks, Ident ity

Linux Distro Runtime Libraries

Node-specific OS Kernel(s)

ISV Applications

System Architecture

Master

Login

Provision Pool

C
o

m
p

u
te

Management

I/O Servers

System Architecture

Intention over time is to provide reference design(s) with use cases for big and
small system designs:

- usual designation of node types by funct ion

- current recipe example is “ diskless”

- intend to include diskfull examples as well

5

Master

C
o

m
p

u
te

[Flat]

[Hierarchical]

Install Guide - CentOS7.1 Version (v1.0.1) with PBS Professional

eth1eth0

Data

Center

Network

high speed network

tcp networking

to compute eth interface

to compute BMC interface

compute

nodes

Lustre* storage system

Master

(SMS)

Figure 1: Overview of physical cluster architecture.

infrastructure; however, an alternate configuration can also be accommodated via the use of a shared NIC, which runs

a packet filter to divert management packets between the host and BMC.

In addition to the IP networking, there is a high-speed network (InfiniBand in this recipe) that is also connected

to each of the hosts. This high speed network is used for application message passing and optionally for Lustre

connectivity as well.

1.3 Br ing your own license

OpenHPC provides a variety of integrated, pre-packaged elements from the Intel® Parallel Studio XE software suite.

Portions of the runtimes provided by the included compilers and MPI components are freely usable. However, in order

to compile new binaries using these tools (or access other analysis tools like Intel® Trace Analyzer and Collector,

Intel® Inspector, etc), you will need to provide your own valid license and OpenHPC adopts a bring-your-own-license

model. Note that licenses are provided free of charge for many categories of use. In particular, licenses for compilers

and developments tools are provided at no cost to academic researchers or developers contributing to open-source

software projects. More information on this program can be found at:

https://software.intel.com/en-us/qualify-for-free-software

1.4 I nput s

As this recipe details installing a cluster starting from bare-metal, there is a requirement to define IP addresses and

gather hardware MAC addresses in order to support a controlled provisioning process. These values are necessarily

unique to the hardware being used, and this document uses variable substitution (${ variable}) in the command-line

examples that follow to highlight where local site inputs are required. A summary of the required and optional variables

used throughout this recipe are presented below. Note that while the example definitions above correspond to a small

4-node compute subsystem with a single head node, the compute parameters are defined in array format to accommo-

date logical extension to larger node counts.

5 Rev: 13.0.800-66.1

8

OpenHPC 1.0 - Initial starting components

Functional Areas Components

Base OS CentOS 7.1

Administrative

Tools

Conman, Ganglia, Intel Cluster Checker**, Lmod, LosF, Nagios, pdsh, prun,

EasyBuild

Provisioning Warewulf

Resource Mgmt. SLURM, Munge

I/O Services Lustre client (community version)

Numerical/

Scientific

Libraries

Boost, GSL, FFTW, Metis, PETSc, Trilinos, Hypre, SuperLU, Mumps, Intel

MKL**

I/O Libraries HDF5 (pHDF5), NetCDF (including C++ and Fortran interfaces), Adios

Compiler

Families
GNU (gcc, g++, gfortran), Intel Parallel Studio XE (icc,icpc,ifort)**

MPI Families MVAPICH2, OpenMPI, Intel MPI**

Development

Tools

Autotools (autoconf, automake, libtool), Valgrind,R, SciPy/NumPy, Intel

Inspector **

Performance

Tools

PAPI, IMB, mpiP, pdtoolkit TAU, Intel Advisor**, Trace Analyzer and

Collector**, Vtune Amplifier**

** Bring your own license model

Notes:

• Additional dependencies

that are not provided by

the BaseOS or community

repos (e.g. EPEL) are also

included

• 3rd Party libraries are built

for each compiler/MPI

family (6 combinat ions

typically)

• Resulting repository

currently comprised of

~250 RPMs

9

OpenHPC++ - Potential future efforts

Functional Areas Components Contributions by:

Base OS CentOS 7.1, McKernel, Kitten, mOS RIKEN, Sandia, Intel

AdminTools
Conman, Ganglia, Intel Cluster Checker**, Lmod, LosF, Nagios, pdsh, prun,

 EasyBuild, ORCM
Intel

Provisioning Warewulf, xCAT Community

Resource Mgmt. SLURM, Munge, ParaStation mgmt, PMIx, PBS Pro
ParTec, community,

Altair

Cross Cutting OpenStack HPC suitable components Cray

Runtimes OpenMP, OmpSs, OCR BSC, Intel

I/O Services Lustre client (community version)

Numerical/
Scientific Libs

Boost, GSL, FFTW, Metis, PETSc, Trilinos, Hypre, SuperLU, Mumps, Intel MKL**

I/O Libraries HDF5 (pHDF5), NetCDF (including C++ and Fortran interfaces), Adios

Compiler
Families

GNU (gcc, g++, gfortran), Intel Parallel Studio XE (icc,icpc,ifort)**

MPI Families MVAPICH2, OpenMPI, Intel MPI**, MPICH, ParaStation MPI Argonne, ParTec

Development
Tools

Autotools (autoconf, automake, libtool), Valgrind,R, SciPy/NumPy, Intel Inspector **

Performance
Tools

PAPI, Intel IMB, mpiP, pdtoolkit TAU, Intel Advisor**, Intel Trace Analyzer and

Collector**, Intel Vtune Amplifier**, Paraver, Scalasca

BSC, Jülich

** Bring your own license model

Installation brief

OpenHPC Build Service

OpenHPC on Microsoft Cloud OS

Dell HCS

One Last thing….

Faster time-to-results, better throughput and utilization

• EAL3+ security certification and SELinux support

• Policy-driven, topology-aware scheduling

• Accelerator/Co-processor scheduling

• Green Provisioning™ for power management

• Cgroups and fairshare available

• Proven to run millions of jobs per day

• Backfill, sharing, and shrink-to-fit jobs maximize usage

• Extensible plugin framework

• Open architecture to implement virtually any policy

NASA’s Workload Manager of Choice

for All NAS HPC Resources

~200k cores scheduled by PBS Professional

PBS Pro: HPC Workload Management & Job Scheduling

PBS Pro Open Source – mid-2016

 Marry community innovations & enterprise
expertise
 Accelerate innovations and adoption for both

 Founding member of

 Committed to openness and longevity
 Dual licensing: OSI-approved & commercial

 No change for commercial users
 A single, common “core” for PBS Pro
 Accepted OSS practices, e.g., GitHub
 More info: pbsworks.com/opensource

© 2015 Altair Engineering, Inc. Proprietary and
Confidential. All rights reserved.

http://www.openhpc.community/

PBS Pro on OpenHPC

PBS and Docker

$

PBSProwith$Docker$Integration$ 5$

e.! StarttheDocker$container$usingtheimage$name,$resource$restrictions,$environment$list$
andallmounted$directories.$$UsethejobIDasthenameofthe$container.$This$gives$
each$container$a$unique$name,andwecanuse$that$name$when$we$stop$the$container.$

f.! In$order$to$allow$a$multiJvnode$job$script$running$inside$a$Docker$containertodistribute$
taskstoother$vnodes,$the$container$needstobe$able$to$communicate$withtheMoM$
runningonits$host.$$Youcando$this$usingthehost$network$stack$inside$the$container$
viathe"JJnet=host"$option.$$We$explain$furtherinsection$4.$

g.! Before$starting$the$container,$the$hook$sets$"docker$exec"asthe$program$nametobe$
executed,andthe$actual$job$script/executable$becomesoneoftheprogram$arguments.$

$

4.! Createanexecjob_end$hook$to$strip$downtheDocker$container$launchedbyexecjob_launch$
hook.$

$

$

$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$

!

WhenyouusePBSwith$Docker$containers,amultiJvnodejobruns$each$taskoneach$vnode$inJ
sideacontainer.$$Each$task$may$need$to$communicate$withtheothers,soyou$make$containers$
on$sister$MoMs$networkJlinked$to$those$onthemother$superior.$

HOSTB

HOSTA

$

$$$$$$$$$PBS$Server$ $ PBSMoM

execjob_end$

execjob_launch$
Docker$

container$

create$container$

delete$container$

Launchjob1.HOSTA$

PBS and Docker
 PBS starts a separate Docker container to run each job; the

scope of this container ends with the job.
 PBS provides the exact same environment to a job in a

container that it provides to any other job when staging files in
and out, managing a job’s output and error files, and exporting
environment variables.

 When PBS starts a Docker container, it configures the container
so that the job cannot use more resources than it explicitly
requested.

 For multi-vnode jobs, PBS configures any Docker containers
created on sister MoMs to be network-linked to the container
running on the mother superior, allowing communication
between job tasks on separate execution hosts.

 When a job ends, PBS manages shutdown of the Docker
containers it started for that particular job.

… to finish
 OpenHPC can be successfully used on flexible clouds platform
 A lot of scientific software will available on this platform

 We have to thanks a lot of people but a special thanks:

