Cognitive Computing and Patient Data Management Systems

Ranit Aharonov, PhD IBM Research – Haifa

January 2014

Outline

- It's all about data
- Cognitive systems & Watson
- Analytics
- Clinical decision support

It's all about data

© 2014 International Business Machines Corporation

Social

Δ

Big Data: This is just the beginning

Sensors & Devices	100)
	80	Percei
Social	60	nt of un
Media	40	ocertain
VoIP	20	data
Enterprise Data		
	0	

The characteristics of Big Data

Establishing the Veracity of big data sources

1 in 3 business leaders don't trust the information they use to make decisions

the broadening Variety

80% of the worlds data is unstructured

Healthcare challenge: Poly-structured data

A vision for patient care: How data becomes the first line of treatment

Patient-centered care: a competency outcome map

© 2014 International Business Machines Corporation

Cognitive computing & Watson

Eras of Computing

Programmable **Systems Era**

Search Deterministic Enterprise data Machine language Simple outputs

Cognitive

Big Data

Systems Era

Discovery Probabilistic **Big Data** Natural language Intelligent options

Watson

Taking Watson beyond Jeopardy!

© 2014 International Business Machines Corporation

Capabilities of Cognitive Systems

A New Partnership for a New Era of Computing

Learning & Reasoning **Systems**

The Cognitive Experience

Humans

Cognitive Computing

Complex reasoning and interaction extends human cognition

Finance Enhance decision support

Healthcare Surface best protocols to practitioners

Legal Suggest defense/ prosecution arguments

Telemarketing Next generation – persuasive – call center

Analytics

Prediction models are based on the data features

• A patient is represented as a vector of features

Patient feature vector

HEALTHCARE TRANSFORMATION

Patient Similarity Analytics

with known outcomes

The Machine Learning Paradigm: Predictive analytics

Periodic Training: Learn from the latest data

Output: alerts predictions recommendations categorization visualization ...

© 20204 International Business Machines Corporation

Outcome (e.g. Good/bad response)

Outcome

Analytics and decision support in care provisioning

© 2014 International Business Machines Corporation

- Epilepsy is highly heterogeneous making it an ideal disease to leverage real world evidence for a personalized treatment approach
- Analytics used to process large volumes of claims data
- Goal: estimate outcomes of candidate therapies and assist in designing optimal treatment regimen
- Patients with epilepsy often desire different outcomes

 → a treatment's success is not determined solely by its
 efficacy at treating symptoms

PharmaTimes

UCB and IBM bet on big data to help

WORLD NEWS | MAY 17, 2013

epilepsy

KEVIN GROGAN

epilepsy patients

🔁 SHARE 🛛 🖪 🎔 🖂 ...) 🛛 🕂 🖉 🛛

JCB has teamed up with IBM to "harness supercomputer power" and help improve treatment for

- The partners have announced the completion of the nitial phase of a "pioneering project designed to narness the power of super computers and ntelligent analytics" aimed at delivering personalised care for people with epilepsy. They add
- hat "this exciting milestone marks the critical first step in the path towards eventually harnessing the
- oower of cognitive computing capabilities", for patients.

Step 1: Predicting the Patient's Outcome

Approaches Explored

- Patients and features clustering
 - K means (Euclidean)
 - Newman (spectral clustering)
 - Iclust (Based on information theory)
- Learning algorithms
 - Logistic regression
 - Random Forest
 - KNN
 - SVM
 - With linear, polynomial and RBF(Gaussian) kernel
 - Hierarchical model
 - Based on failure event type
 - Based on time to event

Step 2: Assigning the Optimal Treatment

Optimal Treatment Prediction Evaluation

- Will the recommended treatment improve the patient's outcome? Only a clinical trial can tell
- But
 - Comparing the outcome in case of agreement/disagreement of the given treatment with the predicted optimal treatment should provide support

Use of the system has the potential to significantly impact patient health

Patients who were given the treatment recommended by the system had longer survival rates for treatment change and the hospitalization outcomes

- Oncology CareTrio Interactive decision support system
- Precision oncology based on genomics
- Decision support for policy makers

Oncology Care Trio

- CareEdit Clinical Guideline Editor:
 - Defines, edits and maintains clinical guidelines at the organization level
 - Reflects standard of care
 - Evidence based as well as data driven
- CareGuide Physician Advisor:
 - Point of care decision support tool
 - Guideline based and Data driven (on top of the guidelines)
- CareView Decisions Review:
 - Retrospective analysis of past care decisions
 - Comperes guidelines to provided treatment at the population level
 - Enables guideline refinements and personalized medicine
 - Generates clinical insights for better care at lower cost

Oncology Care Trio – User Roles

- The experts panel uses **CareEdit** to define the organization's guidelines to support best standard of care
- The physician uses **CareGuide** to decide on the best treatment based on the guidelines, her experience and proficiency and additional inputs from patients and peers

• The ward manager uses **CareView** to review past decisions against organization guidelines and achieved outcome. She can then educate physicians and/or recommend to modify organization's guidelines

- 💦 Clinical Prese	ntation								
Filter based on diffe	erent clinical presentation features	s:							
Disease status:	metastatic -	Tumor region:	*	Tumor size:	Tumor		•		
Histological type:		Tumor grade:	.	Tumor depth:	Teseciability				
Please select one o	clinical presentation:								
Clinical pressure 32 Angiosarco 2 Angiosarco 1 Dermatofiti 35 Leiomyosa 4 Leiomyosa 36 Liposarcor 437 Metastatic 70 Metastatic 3 Metastatic 6 Neurofibro 1 Neurofibro 50 Pleomorph 30 Synovialsa 7 Synovialsa	esentation ma metastatic sarcoma ma metastatic sarcoma in the pulr prosarcoma metastatic sarcoma ircoma metastatic sarcoma ircoma metastatic sarcoma sarcoma sarcoma in the pulmonary region, r sarcoma in the pulmonary region, r sarcoma metastatic sarcoma icsarcoma metastatic sarcoma icsarcoma metastatic sarcoma incoma metastatic sarcoma in the pulmonary region, r sarcoma metastatic sarcoma intervention and the pulmonary sarcoma metastatic sarcoma intervention and the pulmonary rcoma metastatic sarcoma in the rcoma metastatic sarcoma in the p	monary region, non-resectal pulmonary region, non-resec non-resectable tumor resectable tumor a pulmonary region, non-res the pulmonary region, non-resec ulmonary region, non-resec	ble tumor ctable tumor sectable tumor resectable tumor ctable tumor						
Total: 15 Selecte	d: 0								
🕨 茸 Recommende	d Treatment Programs								
Filters	Clea	an Treatment Decisi	ions Treatment Outcom	e Decision Analysis					
▼ By temporal pa	rameters (Adherence by Yea	ar	?	Adherence by Guideline Version		() 🗆 Gender d	distribution	?
Guideline version	v3 v4 v5 v3 v4 v5 0 Sep/11 Oct/12 Now	100 90 80 70 0 0 0 0 0 0 0 0	900 800 700 600			2,000 1,900 1,800 1,700 1,600 1,500 1,400 1,300 1,200 1,00 0 	ale (1677). %		

Fondazione IRCCS Istituto Nazionale dei Tumori via Venezian, 1 20133 Milano

User Name 🔹 🕒 👻 🕜 👻

System deployed in INT

Fondazione IRCCS Istituto Nazionale dei Tumori via Venezian, 1 20133 Milano

System deployed in INT

Recommended Treatment Programs Treatment Outcome Treatment Decisions Decision Analysis Clean Filters ? By temporal parameters Survival statistics Guideline version range: 100 v1 v2 v3 v4 v5 Start Jun/09 Oct/10 Sep/11 Oct/12 Now 90 Start date: Starting when? End date: 80 Until when? By clinical parameters 70 By demographic parameters By encounter parameters Settings Clean (%) 60 Survival statistics Patient Survival 50 -Overall survival (250) 40 30 20 10 5 2 3 4 6 0 1 Time (years)

© 2014 International Business Machines Corporation

Fondazione IRCCS Istituto Nazionale dei Tumori via Venezian, 1 20133 Milano

Adherence assessment and deviations from clinical practice guidelines

Understanding rationale for deviations from guidelines

Charting a course for genomic medicine from base pairs to bedside (Nature 2011). Green ED, Guyer MS, National Human Genome Research Institute.

StructureBiologyBiologyScienceTranslationofofofofto HealthcareGenomesGenomesDiseaseMedicine

© 2014 International Business Machines Corporation

Personalization of cancer treatment based on genomics

We now know that each cancer patient, and even each patient's tumor, has a unique molecular profile

This tumor heterogeneity is being addressed by the development of hundreds of new targeted drugs

 Cancer trials account for about 40% of all clinical trials

Prescribing drugs to cancer patients becomes a complex task which is beyond the capability of even an expert oncologist

As a results, precision oncology decision support will become the standard of care

• 20,000 genes

Thousands of mutations Hundreds of pathways

The vision: precision oncology cloud service

A clinical report that provides ranked list of treatment options based on tumor molecular profile

The 'query': Tumor molecular profile

chr	pos	ensid	hugo	chest hmm	ear hmm	chest exp	ear exp	comp exp	skin exp
Ψ.	·	-	-	-	*	*	-	-	*
19	1609293	ENSG0000	TCF3	1	2	45.25	52.80	10.43	17.75
14	93389445	ENSG0000	CHGA	3	3	2056.63	2.65	14.51	2.27
3	1.96E+08	ENSG0000	TFRC	2	2	37.11	30.43	18.25	5.30
16	337440	ENSG0000	AXIN1	3	2	13.12	14.23	3.82	6.46
17	48260650	ENSG0000	COL1A1	2	2	334.62	272.54	31.60	124.33
1	23037458	ENSG0000	EPHB2	2	2	7.35	11.62	3.48	3.42
9	21967752	ENSG0000	CDKN2A			8.91	27.31	1.30	1.60
×	1.51E+08	ENSG0000	MAGEA4			83.17	1.02	2.32	1.03
15	40453210	ENSG0000	BUB1B			5.41	6.30	2.32	2.29
5	1.6E+08	ENSG0000	PTTG1	2		26.74	26.85	6.97	9.96
17	76987799	ENSG0000	CANT1	3		34.85	40.32	12.17	17.15
16	11348262	ENSG0000	SOCS1	3		21.95	16.80	4.58	8.16
20	35973088	ENSG0000	SRC	3	2	20.09	25.41	5.88	8.60
11	1.03E+08	ENSG0000	MMP1	2	2	128.95	138.75	1.85	1.19
9	470291	ENSG0000	KANK1	2	2	4.44	3.81	11.90	12.38
1	45285516	ENSG0000	PTCH2	2	2	282.39	1.92	2.94	4.10
11	1.03E+08	ENSG0000	MMP3	2	2	96.89	33.82	2.45	1.46
9	1.27E+08	ENSG0000	LHX2	2	2	183.67	2.15	2.00	2.78
×	1.41E+08	ENSG0000	MAGEC2	3	3	56.91	1.01	3.40	1.00
16	89985667	ENSG0000	MC1R	2	2	124.86	85.82	6.95	6.03
5	38475065	ENSG0000	LIFR	3	3	2.14	1.71	21.28	4.39
1	1.71E+08	ENSG0000	PRRX1	3	3	5.83	5.83	24.80	15.16
×	55115441	ENISGOOOO	PAGE2	1	3	44 90	1.02	2 42	1.03

Batch processing: Comprehensive corpora of biomedical insights and supportive evidence

© 2014 International Business Machines Corporation

Public health for Africa: Cervical cancer

Africa's second highest cause of mortality, stems in poor awareness, scarce access to timely screening and treatment and lack of strategic public health infrastructure.

Our goal:

- boost awareness about Cervical Cancer
- improve monitoring and decision making
- promote a proactive approach to public health in Africa

Method

• A new system that leverages cloud and mobile technologies to gather, manage, analyze and visualize data on cervical cancer in Kenya

"Instead of waiting for the patient to come to the clinic, the clinic comes to the patient"

Solution Architecture

Mobile apps: Mobile clinic, **Collect data from** the field

Cervical Cancer Screening Form
CLIENT DETAILS
Client Number 012345
Client Name Jane Smith
Date of Birth 11/21/73
Phone no
VISIT DETAILS
Date 9/1/13
Service area
Location
Facility Name and Code
County Bungoma
District Buncoma Moth
Visit Tuno
Initial Screening
VISIT OUTCOME
Screening Method and Results
Treatment Screening today, Cryotherapy postponed
Referred to

Data access and visualization application for decision support

care

© 2014 International Business Machines Corporation

Curated DB

Probabilistic graphical model of cervical cancer

Specific Scenarios of interest and their future impact can be checked

IBM Cervic	cal Cancer Care	Demo (with IBI	M Interactive N	laps Technolog	IY)						
Scenarios	1) Current s	tatus 9-12vo	2) vaccinate	9-12yo 3)C	urrent status 3	15-40yo 4)	screen and trea	ıt 35-40yo in nexi	tyear		
elect Column	n to sort table and up	pdate map									
Counties	Facilities Mo	del									
1. county	2. v women	3. urban (%)	4. attended primary School (%)	5. health facility nearby (%)	6. HIV+ (%)	7. vaccinated (%)	8. HPV+ in 10 years (%)	9. CC mortality rate in 10 years per 100K	10. CC mortality rate in 30 years per 100K	11. CC incidence rate in 10 years per 100K	12. CC incidence rate in 30 years per 100K
Kenya	2090597	28.8	90.8	25.3	7.18	0	31.0	11.1	55.8	30.3	80.4
Nairobi	110886	100	97.8	93.1	10.9	0	32.2	11.6	56.9	31.4	81.8
Kakamega	96170	14.9	95.8	13.2	5.95	0	30.6	11.0	55.3	30.0	79.7
Nakuru	83874	45.8	98.0	39.5	5.95	0	30.6	11.0	54.9	29.9	79.1
Bungoma	82381	21.7	95.9	19.2	6.94	0	30.9	11.1	55.8	30.3	80.4
Meru	79201	12.0	96.1	10.5	3.96	0	30.0	10.7	54.3	29.3	78.2
Mandera	78647	18.4	46.3	14.8	0.99	0	29.0	9.84	52.2	27.7	74.9
Kiambu	73375	60.6	99.6	54.0	5.95	0	30.6	11.0	54.8	29.9	78.8
Kisi	69156	21.2	98.4	18.8	15.9	0	33.8	12.3	60.7	33.2	87.6
Kiifi	64661	25.0	90.3	21.7	8.92	0	31.6	11.3	56.8	30.9	81.9
Kitul	59812	13.5	99.7	10.7	3.96	0	30.0	10.7	54.3	29.3	78.1
Homa Bay	57039	14.4	97.8	12.7	15.9	0	33.8	12.5	60.9	33.4	88.0
Turkana	56505	14.5	64.5	11.3	5.95	0	30.6	10.9	55.3	29.9	79.6
Migori	55847	34.0	97.9	30.3	15.9	0	33.8	12.4	60.6	33.3	87.5 E
Machakos	54800	50.8	98.8	43.6	3.96	0	30.0	10.8	53.8	29.3	77.4
Kisumu	51903	51.6	96.5	46.7	15.9	0	33.8	12.5	60.4	33.4	87.2
Bonet	51795	14.8	98.3	13.1	5.95	0	30.6	10.9	55.3	29.9	79.6
Narok	50882	6.80	85.1	5.61	5.95	0	30.6	10.8	55.3	29.8	79.7
Makueni	50688	11.4	97.4	9.83	3.96		30.0	10.8	54.3	29.4	78.3
Trans Neo	47804	20.2	01.4	17.6	6.05		20.6	10.0	66.0	20.0	70.5
Wair	47737	15.3	60.7	10.2	0.99		29.0	9.89	52.3	27.8	75.1
Siava	46653	10.6	08.1	0.12	15.0		33.8	12.6	61.0	33.6	88.2
Usein Ciel	40177	20.4	00.7	24.2	6.06		20.0	11.0	65.0	20.0	70.2
Buria	44300	16.2	05.8	14.4	6.05	0	30.6	11.0	65.3	30.0	79.7
Muranola	43646	18.2	00.4	14.3	6.06		10.6	44.4	66.4	30.4	70.0
Mandi	43048	10.4	07.7	12.0	3.62	•	30.0	40.7	64.2	20.0	70.0
Cardena	42048	10.7	ar.r	16.0	3.00	•	20.0	10.7	62.2	47.6	76.4
Garasa	40143	29.0	39.5	10.2	0.02	0	21.0	44.3	-2.3 68.0	a1.7	10.1
Kwale	3/09/	17.0	67.2	19.0	0.92	0	31.0	11.3	0.9	30.0	77.0
Mompasa	35961	100.0	43.3	96.3	0.90	0	30.6	10.8	54.1	29.6	70.0
west Poko	ot 34994	8.34	71.3	7.18	5.95	0	30.6	10.8	55.3	29.8	79.6
Baringo	34894	11.5	86.4	9.30	5.95	0	30.6	11.0	55.4	29.9	79.8
Kajado	34628	41.3	82.7	31.4	5.95	0	30.6	10.9	55.0	29.8	79.2
Nyandaru	a 33895	18.5	98.9	16.3	5.95	0	30.6	11.0	55.3	30.0	79.6
Kericho	32360	38.8	98.1	34.4	5.95	0	30.6	11.0	55.0	29.9	79.2
Vihiga	32156	31.1	97	28.4	5.95	0	30.6	11.1	55.1	30.0	79.4

				9-12 year	vaccinate	35-40 year	screen and			
				olds, current	9-12 year	olds, current	treat 35-40			
				situation	olds	situation	year olds	units		
			cost	0	17090159	0	12464287	dollars		
	lives say	ved in 10 y	ear period	0	262.77	0	1439.6	women		
	lives say	ved in 30 y	ear period	0	6526.99	0	4817.01	women		
year	s of life sa	ved in 10 y	ear period	0	0 214.63 0 1436.12 years					
year	s of life sa	ved in 30 y	ear period	0	18260.82	0	17092.3	years		
		women in	age group	2090597	2090597	1194738	1194738	women		
healthcare savings in later 10 years				0	13786	0	25130	dollars		
cancer incidence rate in 10 years				30.29	18.57	103.32	78.43	women pe	er 100,000	
Ca	ancer incid	lence rate i	in 30 years	80.37	50.25	158.13	154.38	women pe	er 100,000	

Comparing the two plans, screening and treating all the 35-40 year olds has a large short term effect and is cheaper while the vaccination costs more but saves more lives in the 30 year period

New technology for a better quality of life

© 2014 International Business Machines Corporation

Contact information

Dr. Ranit Aharonov, ranita@*il.ibm.com*, +972-3-7689-456 Machine Learning for Healthcare and Life Sciences Analytics department, IBM Research - Haifa

© 2014 International Business Machines Corporation