Functional mechanisms that mediate stimulus-specific adaptation in subcortical auditory nuclei

Manuel S. Malmierca

Complexity of the auditory system

AUDITORY PATHWAY IN RAT

ORGANIZACIÓN FUNCIONAL DEL COLÍCULO INFERIOR

Recording

• Calculate the frequency response area (FRA).

Frequency (kHz)

Habituating

Pérez-González et al. 2005; EJN

Types of Adaptation

Oddball paradigm

Ulanovsky et al. 2003; Nat. Neuroscience

Oddball paradigm

Experimental protocol

Different frequency contrasts (Δf) and interstimulus intervals (ISI):

 $\Box \Delta f$

- □ 0.04
- □ 0.1
- 0.37

□ ISI

- □ 125 ms (8 Hz)
- □ 250 ms (4 Hz)
- □ 1000 ms (1 Hz)

Different pairs of frequencies within the FRA

IC neurons exhibit SSA

Malmierca et al. 2009; J. Neurosci.

IC neurons exhibit SSA

Is SSA a homogeneous feature throughout the receptive field?

Duque et al, 2012; J. Neurosci.

SSA is not a unique feature of IC neurons

Duque et al, 2012; J. Neurosci.

Duque et al, 2012; J. Neurosci.

Unit # 409

Histogolical location of neurons in the MGB

Topographic maps of SSA constructed using Voronoi Tessellations

SSA is more prominent in the MGM and MGD

SSA varies as a function of

-ISI -∆f, -Probability, and -MGB subdivision

MGM adapting unit supressed during AC deactivation

MGD adapting unit suppressed during AC deactivation

Neurons maintained their SSA levels during cortical deactivation

NO SIGNIFICANT DIFFERENCES IN CSI BETWEEN CONDITIONS

Cortical deactivation 'do not' change SSA in Inferior colliculus neurons

Inferior colliculus neurons maintain 'significant' SSA levels during cortical deactivation

Anderson and Malmierca 2012; EJN.

Inferior colliculus neurons maintain 'significant' SSA levels during cortical deactivation

Anderson and Malmierca 2012; EJN.

AC produces a GAIN CONTROL

Time (ms)

SOURCES OF GABA TO THE IC

MICROIONTOPHORESIS

FIRING RATE

Perez-Gonzalez et al., 2012; PLOS ONE

SSA INDEX

GABAZINE does not complitely abolish SSA

Perez-Gonzalez et al., 2012; PLOS ONE

SSA INDEX

FIRING RATE

No differential effect

GABA produces a GAIN CONTROL

Perez-Gonzalez et al., 2012; PLOS ONE

Anesthetized vs. awake procedures

• Awake

- □ Taming and habituation
 - \Box 3 days of handling
 - □ Taming with condensed milk

□ Surgery

- □ Isofluorane anesthesia (rapid recovery)
- Custom head-post fixed to the scalp with light-cured adhesives
- □ Craneotomy

\Box Recording

- □ Maximum of 3 hours per session
- □ Maximum of 4-5 recording sessions
- □ Mouse sedated it struggling

Neuronal examples

Spontaneous activity

SR, sleep and responses to danger

- <u>SSA may especially important</u> when nervous system activity is suppressed during sleep-like states...
- ... so there is an inverse correlation
 between Spontaneous activity and
 SSA sensitivity

Single Unit Recording

Missmatch Negativity Potential

Ulanovsky et al., 2003 Pérez-González et al., 2005 Malmierca et al., 2009 Antunes et al., 2010

Näätänen, 1978

Subcortico-cortical contributions ... – 1: frequency deviants

Grimm et al. (2011). Psychophysiology, 48, 377-384

CONCLUSIONS

- Neurons in the IC and MGB show SSA, somewhat similar to that seen in the cortex.
- GABA does not shape SSA in the inferior colliculus, but rather it acts as a gain control mechanism
- SSA in the MGB and IC is not inhereited from AC.
- SSA, at least in part, is created *de novo* at the levels of the IC and/or MGB and may lies upstream MMN.

Thanks to the people that do the real work....

David Perez Gonzalez Yaneri A. Ayala Xin Wang Blanca N. Aguillón Javier Nieto Flora Antunes Daniel Duque

¡MUCHAS GRACIAS!