

# 

# An overview of muscle histopathology in myositis: differentiating subtypes of myositis

Professor Janice Holton Professor in Neuropathology UCL Institute of Neurology Queen Square London

British Society for Rheumatology Myositis Masterclass 4<sup>th</sup> December 2015 Manchester





### **Overview**

- Biopsy features
- Muscle biopsy analysis: classical features
- Autoantibodies
- Evolving story of subtypes



# Inflammatory myopathies

- Idiopathic inflammatory myopathies
  - Polymyositis

**Centre for** 

Neuromuscula

- Inclusion body myositis
- Dermatomyositis/juvenile dermatomyositis
- Other inflammatory conditions
  - Anti-synthetase syndrome
  - Immune-mediated necrotising myopathies
  - Vasculitis
  - Sarcoid myopathy
  - Infectious
- Differential diagnosis
  - Dystrophies
  - Myofibrillar and hereditary inclusion body myopathies

### Why classify inflammatory myopathies?



# **UCL**

| Clinical feature                 | Polymyositis                                                 | Dermatomyositis                                              | Juvenile<br>dermatomyositis                                          | Inclusion body<br>myositis                                                    |
|----------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Age at onset                     | > 20 years                                                   | Peak 30-50 years                                             | Mean 7 years                                                         | > 30 years                                                                    |
| Male: female                     | 1:2                                                          | 1:2                                                          | 1:2.3                                                                | 3:1                                                                           |
| Skin involvement                 | No                                                           | Yes (amyopathic,<br>dermatomyositis sine<br>dermatitis)      | Yes                                                                  | No                                                                            |
| Subcutaneous calcinosis          | No                                                           | Yes                                                          | Yes                                                                  | No                                                                            |
| Pattern of weakness              | Proximal, symmetrical                                        | Proximal, symmetrical                                        | Proximal, symmetrical                                                | Quadriceps, distal<br>including long finger<br>flexors, often<br>asymmetrical |
| Myalgia                          | Uncommon                                                     | Generalised                                                  | Generalised                                                          | Uncommom                                                                      |
| Response to<br>immunosuppression | Yes                                                          | Yes                                                          | Yes                                                                  | No                                                                            |
| Cardiac involvement              | Rare                                                         | Rare                                                         | Rare                                                                 | Rare                                                                          |
| Association with malignancy      | No                                                           | Yes (20%)                                                    | No                                                                   | No                                                                            |
| Other associated conditions      | Interstitial lung<br>disease<br>Connective tissue<br>disease | Interstitial lung<br>disease<br>Connective tissue<br>disease | Vasculitis & intestinal infarction, arthritis, fever, abdominal pain | Connective tissue<br>disease                                                  |
| Creatine kinase                  | Up to 50x normal                                             | Normal - 50x normal                                          | Normal - 50x normal                                                  | Normal - 12x normal                                                           |

# Diagnostic criteria: Bohan & Peter 1975

Definition

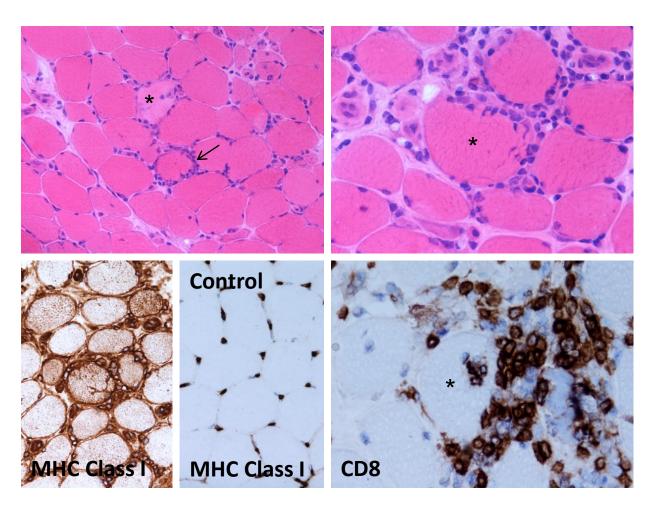
Centre for

Neuromuscula

- Polymyositis is an inflammatory myopathy of unknown cause to which the term dermatomyositis is applied in the presence of the characteristic skin rash.
- Pathological criteria
  - Necrosis and phagocytosis
  - Regeneration
  - Atrophy especially perifascicular
  - Internal nuclei
  - Vacuolation of fibres
  - Variation in fibre diameter
  - Mononuclear inflammatory infiltrate (perivascular most prominent)
  - Increased perimysial and endomysial connective tissue
- Muscle biopsy normal in 10-15%
- Criteria do not distinguish IBM, toxic, necrotising or dystrophies with inflammation








#### MRC Centre for Neuromuscular Disease



# **Polymyositis**

- Necrosis
- Regeneration
- Endomysial inflammation
- Invasion of intact myofibres
- CD8 positive T cells
- Up-regulation of MHC Class I
- Myeloid dendritic cells – antigen presenting
- Plasma cells







### Polymyositis

NEUROLOGY 2003;61:316-321

#### An overdiagnosed entity

M.F.G. van der Meulen, MD; I.M. Bronner, MD; J.E. Hoogendijk, MD, PhD; H. Burger, MD, PhD; W.J. van Venrooij, PhD; A.E. Voskuyl, MD, PhD; H.J. Dinant, MD, PhD; W.H.J.P. Linssen, MD, PhD; J.H.J. Wokke, MD, PhD; and M. de Visser, MD, PhD

NEUROLOGY 2003;61:288-290

**Editorial** 

### Unicorns, dragons, polymyositis, and other mythological beasts

Anthony A. Amato, MD; and Robert C. Griggs, MD

- True PM is rare and the least common IIM
- Consider:
  - DM without rash
  - IBM (look for COX neg fibres and protein aggregates)
  - Immune-mediated necrotising myopathies
  - Dystrophy (FSHD, dysferlin)



# Sporadic inclusion body myositis

- Most common acquired myopathy in patients over 50 years
- M:F = 3:2

**Centre for** 

Neuromuscular Disease

- Whites > other groups
- Insidious onset
- Classically distinctive clinical pattern
  - Quads early falls, knees buckle
  - Deep finger flexors grip
  - Mild facial weakness, dysphagia
  - Asymmetrical involvement

#### Unresponsive to immunosupression



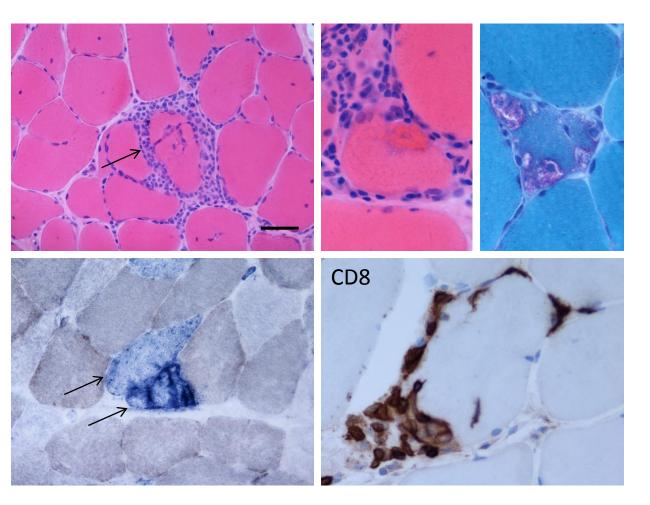
#### Griggs diagnostic criteria 1995:

- Definite IBM
  - Invasion of non-necrotic fibres by mononuclear cells
  - Rimmed vacuoles
  - Intracellular amyloid deposits or 15-18nm tubulofilaments
  - Other clinical/ features not required if biopsy features are diagnostic
- Possible IBM
  - Invasion of non-necrotic fibres by mononuclear cells without other features AND characteristic clinical or laboratory features



# Inclusion body myositis

- Endomysial inflammation
- Invasion of intact myofibres


Centre for

Disease

MRC

Neuromuscular

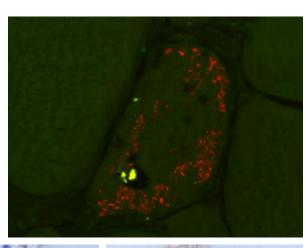
- Rimmed vacuoles
- Necrosis
- Regeneration
- Cox deficient/ragged red fibres
- T cells CD8
- Macrophages
- Myeloid dendritic cells (antigen presenting)
- Plasma cells
- Up-regulation of MHC Class I

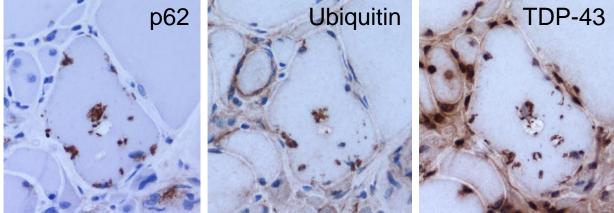


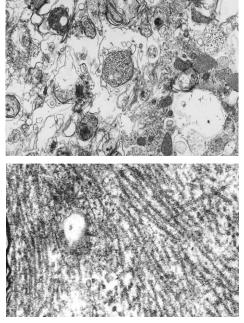


### Inclusion body myositis

- Amyloid deposition
- Protein aggregation
  - Tau


**Centre for** 


Disease


MRC

Neuromuscular

- Ubiquitin
- p62
- TDP-43
- etc.







Ultrastructure: -whorled membranous debris -Tubulofilamentous inclusions

Pathogenesis remains uncertain: immune mediated or degenerative?



AMD

www.elsevier.com/locate/nmd





Available online at www.sciencedirect.com



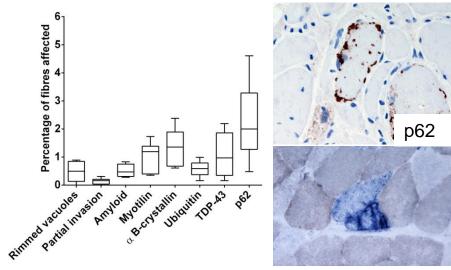
Neuromuscular Disorders 23 (2013) 1044-1055

Workshop report

#### 188th ENMC International Workshop: Inclusion Body Myositis, 2–4 December 2011, Naarden, The Netherlands

#### M.R. Rose\*, and ENMC IBM Working Group<sup>,1</sup>

| Clinical features                                     | Classification                    | Pathological features                                   |
|-------------------------------------------------------|-----------------------------------|---------------------------------------------------------|
| Duration of weakness >12 months                       | Clinicopathologically defined IBM | All of the following:                                   |
| Creatine kinase ≤15× ULN                              |                                   | Endomysial inflammatory infiltrate                      |
| Age at onset >45 years                                |                                   | Rimmed vacuales                                         |
| Finger flexion weakness > shoulder abduction weakness |                                   | Protein accumulation <sup>a</sup> or 15-18 nm filaments |
| AND/OR                                                |                                   |                                                         |
| Knee extension weakness ≥ hip flexor weakness         |                                   |                                                         |
| Duration of weakness >12 months                       | Clinically defined IBM            | One or more, but not all, of:                           |
| Creatine kinase $\leq$ 15× ULN                        |                                   | Endomysial inflammatory infiltrate                      |
| Age at onset >45 years                                |                                   | Upregulation of MHC Class I                             |
| Finger flexion weakness > shoulder abduction weakness |                                   | Rimmed vacuales                                         |
| AND                                                   |                                   | Protein accumulation <sup>a</sup> or 15-18 nm filaments |
| Knee extension weakness ≥ hip flexor weakness         |                                   |                                                         |
| Duration of weakness >12 months                       | Probable IBM                      | One or more, but not all, of:                           |
| Creatine kinase $\leq$ 15 ULN                         |                                   | Endomysial inflammatory infiltrate                      |
| Age at onset >45 years                                |                                   | Upregulation of MHC Class I                             |
| Finger flexion weakness > shoulder abduction weakness |                                   | Rimmed vacuoles                                         |
| OR                                                    |                                   | Protein accumulation <sup>o</sup> or 15-18 nm filaments |
| Knee extension weakness ≥ hip flexor weakness         |                                   |                                                         |


Demonstration of amyloid or other protein accumulation by established methods (e.g. for amyloid Congo red, crystal violet, thioflavin T/S, for other proteins p62, SMI-31, TDP-43]. Current evidence favours p62 in terms of sensitivity and specificity, but the literature is limited and further work is required. MHC Class I, Major histocompatibility complex class I; ULN, Upper limit of normal. MRC Centre for Neuromuscular Disease



#### **BMJ Open** A retrospective cohort study identifying the principal pathological features useful in the diagnosis of inclusion body myositis

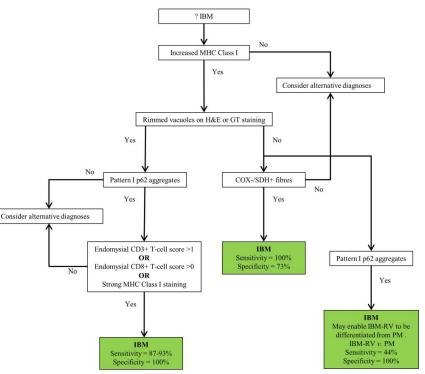
Stefen Brady,<sup>1</sup> Waney Squier,<sup>2</sup> Caroline Sewry,<sup>3,4</sup> Michael Hanna,<sup>1</sup> David Hilton-Jones,<sup>5</sup> Janice L Holton<sup>6</sup>

Six cases Griggs definite IBM, six normal controls



COX-/SDH+ fibres in all cases

Clinically-typical IBM with (n=15) and without (n=9) RV


Steroid-responsive inflammatory myopathies (PM&DM; n=11)

Protein accumulation myopathies with rimmed vacuoles (n=7)

Analysed: protein aggregates (CR, IHC), COX negative fibres, MHC Class I upregulation, inflammatory infiltrate

#### Conclusions

- p62, TDP-43, myotilin, αBCrystallin, ubiquitin positive aggregates in IBM
- COX-/SDH+ fibres in all cases
- MHC class I is upregulated in IBM
- No pathological feature in isolation is diagnostic for IBM
- p62, MHC Class I and COX/SDH are helpful in making a diagnosis of IBM





#### Mohammad Salajegheh<sup>1,2,3</sup>\*, Theresa Lam<sup>2</sup>, Steven A. Greenberg<sup>1,2,3</sup>

Centre for Neuromuscular Disease

Methodology/Principal Findings: Plasma autoantibodies from 65 people, including 25 with IBM, were analyzed by immunoblots against normal human muscle. Thirteen of 25 (52%) IBM patient samples recognized an approximately 43 kDa muscle protein. No other disease (N = 25) or healthy volunteer (N = 15) samples recognized this protein.

*Conclusions:* Circulating antibodies against a 43-kDa muscle autoantigen may lead to the discovery of a novel biomarker for IBM. Its high specificity for IBM among patients with autoimmune myopathies furthermore suggests a relationship to disease pathogenesis.

#### Autoantibodies to Cytosolic 5'-Nucleotidase IA in Inclusion Body Myositis ANN NEUROL 2012:00:000-000

Helma Pluk, PhD,<sup>1</sup>\* Bas J. A. van Hoeve, MD,<sup>2</sup>\* Sander H. J. van Dooren, PhD,<sup>1</sup>\* Judith Stammen-Vogelzangs,<sup>1</sup> Annemarie van der Heijden,<sup>1</sup>

Helenius J. Schelhaas, MD, PhD,<sup>2</sup> Marcel M. Verbeek, PhD,<sup>2</sup> Umesh A. Badrising, MD, PhD,<sup>3</sup>

Snjolaug Arnardottir, MD, PhD,<sup>4</sup> Karina Gheorghe,<sup>5</sup> Ingrid E. Lundberg, PhD,<sup>5</sup>

Wilbert C. Boelens, PhD,<sup>1</sup> Baziel G. van Engelen, MD, PhD,<sup>2</sup> and Ger J. M. Pruijn, PhD<sup>1</sup>

- Autoantibody recognising 44kDa peptide (Mup44) high titre in 33% of IBM sera (<5% in PM, DM and • other controls) using immunoprecipitation assay.
- The target is cytosolic 5'-nucleotidase IA (role: metabolic regulation and cell replication)
- May provide the first serological marker for IBM ٠



#### Brief Report

Arthritis Care & Research DOI 10.1002/acr.22600

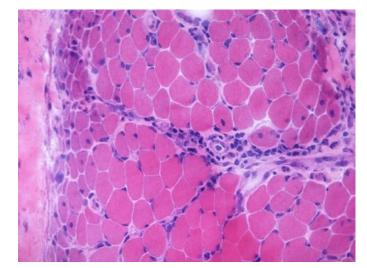
#### Cytosolic 5'-nucleotidase 1A is a common target of circulating

#### autoantibodies in several autoimmune diseases

Thomas E. Lloyd\*, Lisa Christopher-Stine\*, lago Pinal-Fernandez, Eleni Tiniakou,

Michelle Petri, Alan Baer, Sonye Danoff, Katherine Pak, Livia Casciola-Rosen, and

Andrew L. Mammen


- 61% IBM
- 5% PM
- 5% controls
- 15% DM
- 23% Sjorgren's
- 14% SLE
- Not associated with muscle disease in SLE and Sjorgren's





# Dermatomyositis

- Occurs in adults and children
- May be associated with neoplasia in adults
- Juvenile dermatomyositis
  - Commonest childhood IIM
  - Onset before age 16 years
  - Incidence 2-3/million/year
  - Bohan and Peter diagnostic criteria





# **≜UCL**

#### Table 1 | Clinical characteristics and mortality associated with juvenile and adult DM

|   | Disease features                                                                                                | Juvenile DM                                                                                                                                                                       | Adult DM                                                                                                                                                            |
|---|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | Peak age of onset                                                                                               | 7 years <sup>6,10–12</sup>                                                                                                                                                        | 30–50 years <sup>13</sup>                                                                                                                                           |
|   | Proportion<br>of IMM cases                                                                                      | 80-95% <sup>,19,127,128</sup>                                                                                                                                                     | 35–50% <sup>129</sup>                                                                                                                                               |
|   | Proximal weakness                                                                                               | 85–95% <sup>10,12</sup>                                                                                                                                                           | 88% <sup>130</sup>                                                                                                                                                  |
|   | Characteristic rash                                                                                             | Gotton papule: 73–91% <sup>7,131</sup><br>Heliotrope rash: 62–83% <sup>7,131</sup><br>Malar rash: 42–57% <sup>7,131</sup><br>Abnormal nailfold capillaries:<br>80% <sup>131</sup> | Gottron papule: 54% <sup>130</sup><br>Heliotrope rash: 74% <sup>130</sup><br>Malar rash: data not available<br>Abnormal nalifold capillaries:<br>43% <sup>132</sup> |
|   | Calcinosis or ulceration                                                                                        | 26-40% <sup>19,131,133</sup>                                                                                                                                                      | 2–16% <sup>19,133</sup>                                                                                                                                             |
|   | Refractory<br>or chronic disease                                                                                | 59–63% <sup>12,134</sup>                                                                                                                                                          | 63% <sup>133</sup>                                                                                                                                                  |
|   | Malignancy                                                                                                      | 1% <sup>12,133</sup>                                                                                                                                                              | 15-24%41,133                                                                                                                                                        |
|   | Myositis-specific<br>antibodies                                                                                 | 2–40% <sup>19,59</sup>                                                                                                                                                            | 48–70% <sup>38,59</sup>                                                                                                                                             |
|   | Interstitial lung disease                                                                                       | 7–19%29                                                                                                                                                                           | 35–40% <sup>30</sup>                                                                                                                                                |
|   | Gastrointestinal disease                                                                                        | 2–3% <sup>4,19</sup>                                                                                                                                                              | 1% <sup>19</sup>                                                                                                                                                    |
|   | Raynaud disease                                                                                                 | 10%135                                                                                                                                                                            | 11%136                                                                                                                                                              |
| ≽ | Mortality                                                                                                       | <5% <sup>12,13,133</sup>                                                                                                                                                          | 21% <sup>133</sup>                                                                                                                                                  |
|   | All and the second s |                                                                                                                                                                                   |                                                                                                                                                                     |



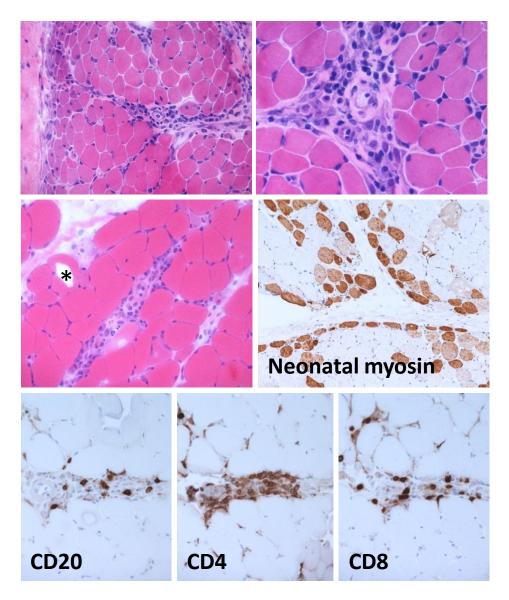
#### Vascular pathology more prominent in JDM than in adults

Robinson and Reed Nat Rev Rheumatol. 2011; 7(11):664-75.



## **Dermatomyositis: biopsy features**

- Perimysial and perivascular inflammation
- Perifascicular atrophy
- Fibre necrosis


**Centre for** 

Disease

MRC

Neuromuscular

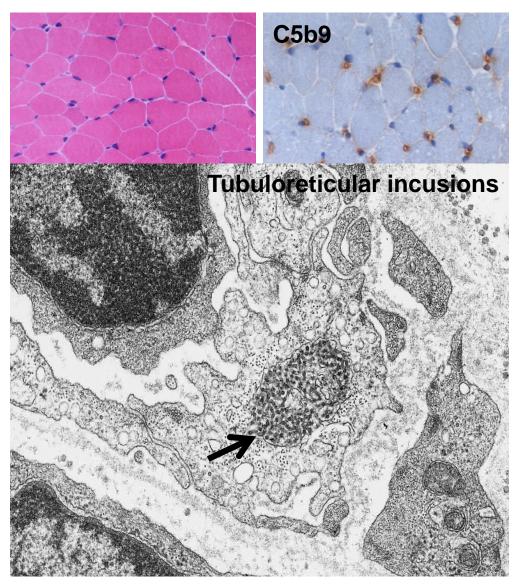
- Fibre regeneration
- Vacuolation
- B Cells
- T cells (CD4>CD8)
- Macrophages
- Plasmacytoid dendritic cells
- Vascular abnormalities
- C5b9 capillary deposition (early event)
- MHC class I expression
- Infarction
- Calcinosis





## **Dermatomyositis: biopsy features**

- Perimysial and perivascular inflammation
- Perifascicular atrophy
- Fibre necrosis


**Centre for** 

Disease

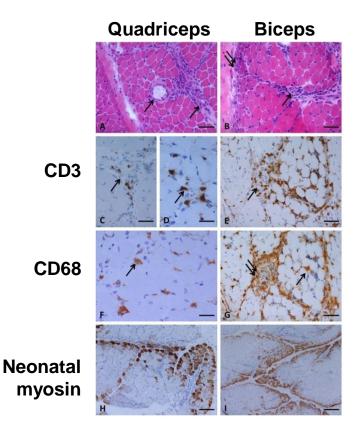
MRC

Neuromuscular

- Fibre regeneration
- Vacuolation
- B Cells
- T cells (CD4>CD8)
- Macrophages
- Plasmacytoid dendritic cells
- Vascular abnormalities
- C5b9 capillary deposition (early event)
- MHC class I expression
- Infarction
- Calcinosis






#### Validation of a score tool for measurement of histological severity in juvenile dermatomyositis and association with clinical severity of disease

**Centre for** 

Neuromuscular Disease

Hemlata Varsani,<sup>1</sup> Susan C Charman,<sup>2</sup> Charles K Li,<sup>1</sup> Suely K N Marie,<sup>3</sup> Anthony A Amato,<sup>4</sup> Brenda Banwell,<sup>5</sup> Kevin E Bove,<sup>6</sup> Andrea M Corse,<sup>7</sup> Alison M Emslie-Smith,<sup>8</sup> Thomas S Jacques,<sup>9</sup> Ingrid E Lundberg,<sup>10</sup> Carlo Minetti,<sup>11</sup> Inger Nennesmo,<sup>12</sup> Elisabeth J Rushing,<sup>13</sup> Adriana M E Sallum,<sup>14</sup> Caroline Sewry,<sup>15</sup> Clarissa A Pilkington,<sup>16</sup> Janice L Holton,<sup>17</sup> Lucy R Wedderburn,<sup>1</sup> the UK Juvenile Dermatomyositis Research Group

Ann Rheum Dis. 2013 Epub



- Devise a reliable method to measure 'severity' of pathological change in JDM (not diagnostic tool)
- Test whether severity on biopsy correlates with clinical severity of disease
- Ultimately: improve management of JDM

Table 4 Associations between manual muscle testing (MMT) and items of the modified score tool for the combined cohort (London and Brazil)

|                                                       | Knee extensor | MMT      | Elbow flexion N | IMT      |
|-------------------------------------------------------|---------------|----------|-----------------|----------|
| Domain and item                                       | r*            | p Value† | r*              | p Valuet |
| Inflammatory domain                                   |               |          |                 |          |
| CD3+ endomysial infiltration                          | -0.40         | 0.006    | -0.44           | 0.003    |
| CD3+ perimysial infiltration                          | -0.40         | 0.007    | -0.41           | 0.006    |
| CD68+ endomysial infiltration                         | -0.53         | 0.002    | -0.62           | <0.001   |
| Inflammatory domain total (modified)                  | -0.56         | 0.001    | -0.59           | <0.0001  |
| Muscle fibre domain                                   |               |          |                 |          |
| Perifascicular atrophy                                | -0.30         | 0.040    | -0.40           | 0.006    |
| Neonatal myosin                                       | -0.57         | 0.001    | -0.57           | <0.001   |
| Regeneration/degeneration/necrosis: perifascicular    | -0.38         | 0.009    | -0.53           | 0.002    |
| Muscle fibre domain total (modified)                  | -0.45         | 0.002    | -0.60           | <0.0001  |
| Histopathologists' Visual Analogue Score for severity | -0.45         | 0.002    | -0.62           | < 0.0001 |

For test of independence.

 Biopsy features correlate with measures of muscle strength in JDM





### **Myositis specific antibodies**

| Antibody                   | Target antigen         | Clinical association        | Frequency in IIM patients   |
|----------------------------|------------------------|-----------------------------|-----------------------------|
| Antibodies associated with | anti-synthetase syndro | ome                         |                             |
| Anti-amino-acyl-tRNA       | Amino-acyl-tRNA        | Myositis, interstitial lung | Overall: 30-40% (JDM: 1-3%) |
| synthetase (8 identified)  | synthetase             | disease, Raynaud's          |                             |
|                            |                        | phenomenon, arthritis.      |                             |
|                            |                        | mechanic's hands, fever,    |                             |
|                            |                        | <u>+</u> DM skin rash       |                             |
| -Jo-1                      | -Histidyl              | Myositis, interstitial lung | Jo-1: 15-20%                |
|                            | , ,                    | disease                     |                             |
| Others: PL7 etc            | -Threonyl etc          |                             | Others in <5% of cases      |
| Antibodies associated with | n dermatomyositis      |                             |                             |
| Anti-Mi-2                  | NuRD                   | Decreased risk of           | <10% (JDM: 4-10%)           |
|                            |                        | malignancy, more severe     |                             |
|                            |                        | rash, response to steroids, |                             |
| Anti-p155/140              | TIF1 family            | Children: ulceration        | 13-21% (JDM: 22-29%)        |
|                            |                        | Adults: malignancy          |                             |
| Anti-p140                  | NXP2                   | Children: calcinosis        | <5% (JDM: 23%)              |
|                            |                        | Adults: interstitial lung   |                             |
|                            |                        | disease                     |                             |
| Anti-SAE                   | SAE                    | Rash precedes myositis      | <5% (JDM: <1%)              |
| Anti-CADM-140              | MDA-5                  | Clinically amyopathic DM,   | 50-73% (JDM: not known)     |
|                            |                        | interstitial lung disease   |                             |

Tansley et al. Arthritis Research & Therapy 2014, **16**:R138 http://arthritis-research.com/content/16/4/R138

#### **RESEARCH ARTICLE**

### Anti-MDA5 autoantibodies in juvenile dermatomyositis identify a distinct clinical phenotype: a prospective cohort study

Sarah L Tansley<sup>1</sup>, Zoe E Betteridge<sup>2</sup>, Harsha Gunawardena<sup>3</sup>, Thomas S Jacques<sup>4</sup>, Catherine M Owens<sup>5</sup>, Clarissa Pilkington<sup>6</sup>, Katie Arnold<sup>7</sup>, Shireena Yasin<sup>7</sup>, Elena Moraitis<sup>6</sup>, Lucy R Wedderburn<sup>8</sup>, and Neil J McHugh<sup>9\*</sup> on behalf of UK Juvenile Dermatomyositis Research Group

- Anti-melanoma differentiation associated gene 5
- East Asia adults: 19-35% DM, amyopathic, rapidly progressive ILD
- Caucasian adults: little myositis, ILD (no rapid progression), skin ulceration, painful palmar papules
- To determine the clinical phenotype and pathological features in caucasian JDM

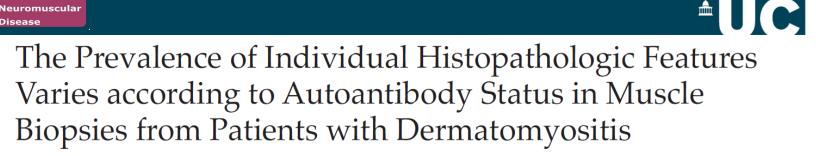
### Table 1 Demographic characteristics of the 285 patientsin this study

|                                              | All JDM<br>patients,<br>n = 285 | Anti-MDA5-<br>positive<br>patients, n = 21 |
|----------------------------------------------|---------------------------------|--------------------------------------------|
| Female, number (%)                           | 206 (72)                        | 15 (71)                                    |
| Caucasian, number (%)                        | 220 (78)                        | 16 (76) <sup>b</sup>                       |
| Diagnosis, number (%) <sup>a</sup>           |                                 |                                            |
| Dermatomyositis                              | 242 (85)                        | 21 (100)                                   |
| Polymyositis                                 | 1 (0.4)                         | 0                                          |
| Overlap                                      | 33 (12)                         | 0                                          |
| Age at disease onset, years,<br>median (IQR) | 6.3 (IQR 4 to 10)               | 6.6 (IQR 4 to 10)                          |
| Length of follow up, years,<br>median (IQR)  | 9 (IQR 5 to 12)                 | 8 (IQR 5 to 11)                            |
| Highest ever CK, u/l,<br>median (IQR)        | 220 (IQR 111 to 1132)           | 129 (88 to 157)                            |








#### Arthritis Research & Therapy 2014, **16**:R138 Anti-MDA5 autoantibodies in juvenile dermatomyositis identify a distinct clinical phenotype: a prospective cohort study

Sarah L Tansley<sup>1</sup>, Zoe E Betteridge<sup>2</sup>, Harsha Gunawardena<sup>3</sup>, Thomas S Jacques<sup>4</sup>, Catherine M Owens<sup>5</sup>, Clarissa Pilkington<sup>6</sup>, Katie Arnold<sup>7</sup>, Shireena Yasin<sup>7</sup>, Elena Moraitis<sup>6</sup>, Lucy R Wedderburn<sup>8</sup>, and Neil J McHugh<sup>9\*</sup> on behalf of UK Juvenile Dermatomyositis Research Group

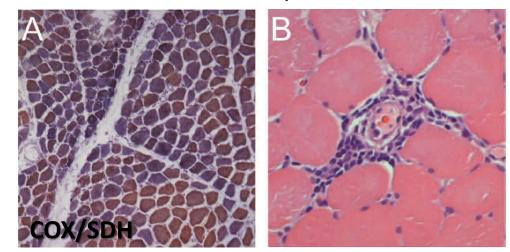
- 7.4% of JDM patients
- Associated with:
  - Skin ulceration (P=0.03)
  - Oral ulceration (P=0.01)
  - Arthritis (P<0.01)
  - Clinically milder (CMAS score) (P=0.03)
  - 4/21 had ILD (not rapidly progressive)
  - Histologically less severe often very subtle changes (JDM biopsy score, P<0.01)</li>

# Screening for MDA5 antibodies helpful to identify the group with milder clinical phenotype, possible ILD and who may have only subtle histological features

Autoantibody status may relate to clinical phenotype, biopsy features and treatment response – ongoing area of research



Iago Pinal-Fernandez, Livia A. Casciola-Rosen, Lisa Christopher-Stine, Andrea M. Corse, and Andrew L. Mammen J Rheumatol 2015;42:1448-54


91 DM

**Centre for** 

Neuromuscular Disease

- TIF1y: mitochondrial dysfunction
- NXP2: less primary inflammation
- Mi-2: more primary ۲ inflammation
- PM-scl: more primary • inflammation

TIF1v



Considerable variability within each group: histology does not clearly predict antibody status

Mitochondrial dysfunction Perifascicular atrophy Perivascular inflammation



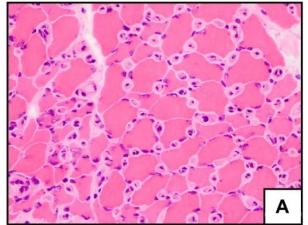
### Immune-mediated necrotising myopathies

• Important group to recognise

Centre for

Neuromuscular

- May respond to immunosupression
- May be associated with neoplasia


## Immune-mediated necrotising myopathies

- Necrotising myopathies associated with
  - Signal recognition particle antibodies (SRP)
  - 3-hydroxy-3-methylglutaryl-CoA reductase antibodies (HMGCR). Usually related to statin therapy (60-70%)
  - Paraneoplasia

Centre for

Neuromuscula

- Anti-synthetase syndrome (? separate group)
- Pipestem capillaries
- Histological features:
  - Many necrotic fibres
    - scattered (perifascicular or regional?)
  - Sparse lymphocytic inflammation
  - C5b9 capillary deposition may occur
  - Pipestem capillaries may be seen
- Differential diagnosis
  - Other IIMs
  - Dystrophies such as FSHD and dysferlinopathy



Pipestem capillaries



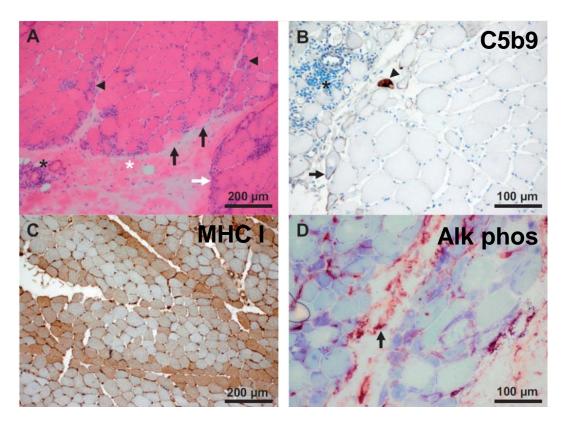


### Immune-mediated necrotising myopathies

|                                    | SRP antibodies                        | HMGCR antibodies                                 | Antisynthetase<br>syndrome                                   | Pipestem<br>capillaries                          | Paraneoplastic                  |
|------------------------------------|---------------------------------------|--------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------|---------------------------------|
| Auto-antibody                      | Signal recognition peptide            | 3-hydroxy-3-<br>methylglutaryl-<br>CoA reductase | Jo-1 (histidyl tRNA<br>synthetase)<br>commonest, PL-7<br>etc | Not described (6<br>cases only in<br>literature) | Usually negative                |
| СК                                 | 2,000 – 30,000                        | 1,000 -25,000                                    | 2,000 - 20,000                                               | 600 – 2,000                                      | 1,700 - 25,000                  |
| Type of myopathy                   | Necrotising                           | Necrotising                                      | Necrotising<br>(perifascicular)                              | Necrotising                                      | Necrotising<br>(regional?)      |
| Cellular infiltrate:               | Endo- and                             | Endo- and                                        | Perimysial                                                   | Endo- and                                        | Endo- and                       |
| Distribution                       | perimysial                            | perimysial                                       | predominant                                                  | perimysial                                       | perimysial                      |
| Cellular infiltrate:<br>Cell type  | Macrophage with myophagocytosis       | Macrophage with myophagocytosis                  | Macrophage with myophagocytosis                              | Macrophage with myophagocytosis                  | Macrophage with myophagocytosis |
| MHC class I                        | Variable<br>(may be absent)           | In 50%                                           | Strong ubiquitous                                            | In some                                          | In some                         |
| MAC                                | Variable capillary<br>(may be absent) | Variable capillary<br>(may be absent)            | Capillaries and<br>sarcolemma<br>(perifascicular)            | Strong capillary                                 | Strong capillary                |
| Perimysial alkaline<br>phosphatase | Negative                              | Negative                                         | Positive                                                     | Negative                                         | Positive                        |

Adapted from: Stenzel W et al NAN (2012) 38: 632-646



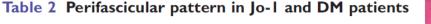



#### REPORT BRAIN 2015: 138; 2485–2492 2485

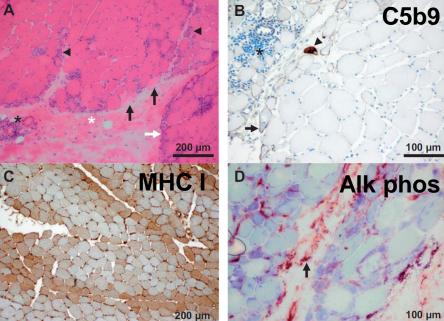
#### Anti-Jo-I antibody-positive patients show a characteristic necrotizing perifascicular myositis

Lénaig Mescam-Mancini,<sup>1</sup>,\* Yves Allenbach,<sup>2,3</sup>,\* Baptiste Hervier,<sup>2,4</sup>,\* Hervé Devilliers,<sup>5</sup> Kuberaka Mariampillay,<sup>2</sup> Odile Dubourg,<sup>6</sup> Thierry Maisonobe,<sup>6</sup> Romain Gherardi,<sup>7</sup> Paulette Mezin,<sup>1</sup> Corinna Preusse,<sup>3</sup> Werner Stenzel<sup>3</sup> and Olivier Benveniste<sup>2</sup>

- 53 Jo-1: biopsy features analysed
- Compared with:
  - 19 Jo-1
  - DM 20
  - IMNM 21
  - sIBM 22







### Anti-Jo-I antibody-positive patients show a characteristic necrotizing perifascicular myositis

Lénaig Mescam-Mancini,<sup>1,\*</sup> Yves Allenbach,<sup>2,3,\*</sup> Baptiste Hervier,<sup>2,4,\*</sup> Hervé Devilliers,<sup>5</sup> Kuberaka Mariampillay,<sup>2</sup> Odile Dubourg,<sup>6</sup> Thierry Maisonobe,<sup>6</sup> Romain Gherardi,<sup>7</sup> Paulette Mezin,<sup>1</sup> Corinna Preusse,<sup>3</sup> Werner Stenzel<sup>3</sup> and Olivier Benveniste<sup>2</sup>

| Pathologic features                                           | DM<br>(n = 20) | Jo-l<br>(n = 19)       |
|---------------------------------------------------------------|----------------|------------------------|
| Myofibre necrosis in<br>perifascicular regions                | 7 (35%)        | I 5 (79%) <sup>‱</sup> |
| Myofibre atrophy in<br>perifascicular regions                 | I7 (85%)*      | 12(63%)                |
| Perimysial fragmentation                                      | 9 (45%)        | l 4 (74%)              |
| Perimysial inflammatory<br>infiltrates                        | 20(100%)       | 19(100%)               |
| HLA enhancement in<br>perifascicular regions                  | 17 (85%)       | l 5 (79%)              |
| Sarcolemmal positivity for C5b-9<br>in perifascicular regions | 10(50%)        | 14(74%)                |



REPORT



\*P < 0.05; \*\*P < 0.01 calculated after multivariate analysis.

Jo-1 characterised by: necrotising perifasicular myositis

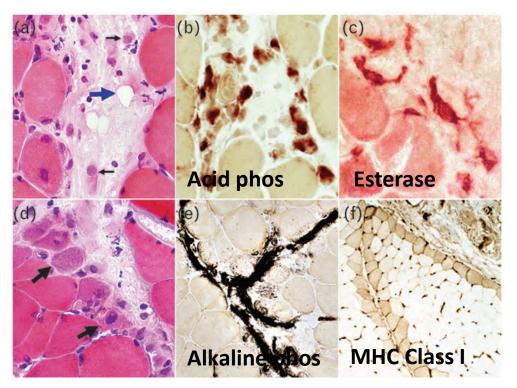


### **Anti-synthetase syndrome**

|                      | Antisynthetase      |
|----------------------|---------------------|
|                      | syndrome            |
| Auto-antibody        | Jo-1 (histidyl tRNA |
|                      | synthetase)         |
|                      | commonest           |
| СК                   | 2,000 - 20,000      |
| Type of myopathy     | Necrotising         |
|                      | (perifascicular)    |
| Cellular infiltrate: | Perimysial          |
| Distribution         | predominant         |
| Cellular infiltrate: | Macrophage with     |
| Cell type            | myophagocytosis     |
| MHC class I          | Strong ubiquitous   |
|                      |                     |
| MAC                  | Capillaries and     |
|                      | sarcolemma          |
|                      | (perifascicular)    |
| Perimysial alkaline  | Positive            |
| phosphatase          |                     |
| Perimysial           | Yes                 |
| disruption           |                     |

Centre for

Disease


MRC

Neuromuscular

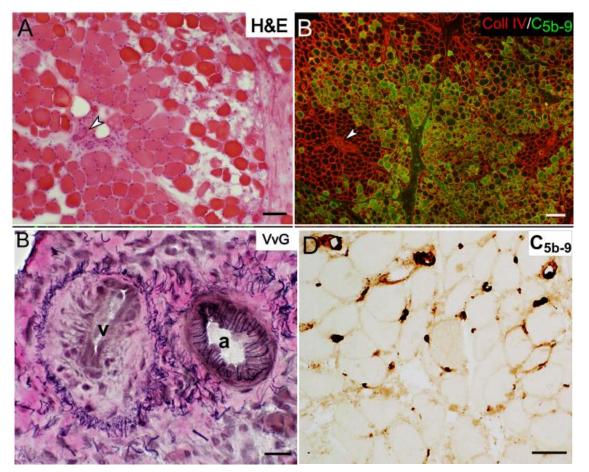
# Acquired immune and inflammatory myopathies: pathologic classification

Alan Pestronk<sup>a,b,c</sup>

Current Opinion in Rheumatology 2011, 23:595–604



Immune myopathy with perimysial pathology (IMPP) Associated with anti-synthetase antibodies




#### Regional Ischemic Immune Myopathy: A Paraneoplastic Dermatomyopathy

Chunyu Cai, MD, PhD, Ali Alshehri, MD, Rati Choksi, MS, and Alan Pestronk, MD

J Neuropathol Exp Neurol 2014, 73 1126-1133

- 7 patients (5 F)
- Onset 41-92 years
- Proximal weakness
- Rapid progression (up to 6 weeks)
- Rash 2/7 (face, chest, dorsal arms and hands
- Myalgia
- Neoplasm 5/7
- CK 145 217,000



#### Regional ischaemic damage



#### Regional Ischemic Immune Myopathy: A Paraneoplastic Dermatomyopathy

Chunyu Cai, MD, PhD, Ali Alshehri, MD, Rati Choksi, MS, and Alan Pestronk, MD

#### J Neuropathol Exp Neurol 2014, 73 1126-1133

|                              | Dermatomyositis –<br>Classical –                                                                                                             | Anti-synthetase                                                                                                                                                                                                         | Neoplasia<br>associated                                                                                                           | MDA5 Antibody                                                                                                                                                                    |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Muscle fibers                | Olassical                                                                                                                                    | Synaronic                                                                                                                                                                                                               | associated                                                                                                                        |                                                                                                                                                                                  |
| Pathology                    | Atrophy<br>COX stain reduced<br>Caveolin-3 aggregates                                                                                        | Necrosis                                                                                                                                                                                                                | Necrosis                                                                                                                          | NA                                                                                                                                                                               |
| Pathology distribution       | Perifascicular<br>Near avascular perimysium                                                                                                  | Near perimysium                                                                                                                                                                                                         | Regional clusters<br>Border zones                                                                                                 | NA                                                                                                                                                                               |
| Inflammation                 | Location: Perivascular<br>Type: Lymphocytes<br>B and T cells                                                                                 | Location: Perimysial<br>Type: Histiocytes                                                                                                                                                                               | Location: Veins<br>Type: Leukocytes                                                                                               | NA                                                                                                                                                                               |
| Vessel pathology             |                                                                                                                                              |                                                                                                                                                                                                                         |                                                                                                                                   |                                                                                                                                                                                  |
| Intermediate-sized           |                                                                                                                                              | Others?                                                                                                                                                                                                                 | Leukocytes in wall                                                                                                                |                                                                                                                                                                                  |
| Perimysial connective tissue | Normal                                                                                                                                       |                                                                                                                                                                                                                         | ÷                                                                                                                                 |                                                                                                                                                                                  |
|                              | Normai                                                                                                                                       | Fragmented<br>histiocytic cells                                                                                                                                                                                         | Normal                                                                                                                            | NA                                                                                                                                                                               |
| Clinical associations        | Onset age: Child and adult<br>Skin: Heliotrope rash<br>Extensor limb surface<br>Weakness<br>Calcinosis<br>Serum CK: Normal or<br>Mildly high | Fragmented<br>histiocytic cells<br>Onset age: Adult > child<br>Skin: Mechanic's hands<br>Lungs: Interstitial fibrosis<br>Weakness<br>Neoplasm: Rare<br>Antibodies: tRNA synthetase<br>Aldolase: May be selectively high | Normal<br>Onset age: Late adult<br>Skin: Rash on face, trunk,<br>and limbs Weakness<br>Neoplasm: Often<br>Serum CK:<br>Often high | NA<br>Onset age: Adult<br>Skin: Ulcers<br>Palmar papules<br>Alopecia<br>Lungs: Interstitial fibrosis<br>Strength: Normal<br>Neoplasm: No<br>Aldolase: May be<br>selectively high |

CK, creatine kinase; COX, cytochrome oxidase; DM-VP, dermatomyositis with vasculopathy; IMPP, immune myopathy with perimysial pathology; NA, not applicable; RIIM, regional ischemic immune myopathy.



# Differential diagnosis of idiopathic inflammatory myopathies

• Dystrophies

Centre for Neuromuscular

- Facioscapulohumeral muscular dystrophy
- Dysferlinopathy
- Myofibrillar myopathies and hereditary inclusion body myopathies



### **Dysferlinopathy (LGMD 2B/Miyoshi myopathy)**

**Centre for** 

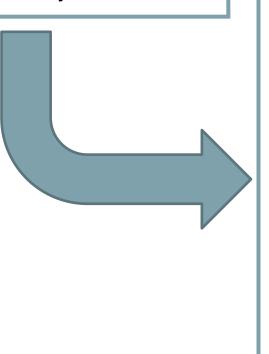
Disease

MRC

Neuromuscular



Homozygous for DYSF sequence variant c.4200dupC (p.lle1401HisfsX7) exon 39


# Classification of inflammatory myopathies: an evolving field

• Polymyositis

**Centre for** 

Neuromuscular Disease

- Inclusion body myositis
- Dermatomyositis



- Polymyositis
- Inclusion body myositis
- Dermatomyositis
  - Antibody specific variants
    - MDA5
    - Others?
  - Antisynthetase syndrome
  - Immune mediated necrotising myopathies
    - Anti-SRP
    - Anti-HMGCoAR
    - Pipestem capillaries
    - Neoplasia?
- Regional ischaemic immune myopathy

– Neoplasia?



## Acknowledgments

Dr David Hilton-Jones Dr Stefen Brady Dr Waney Squier Professor Lucy Wedderburn Ms Hemlata Varsani Professor Caroline Sewry Dr Peter Schutz

International JDM Biopsy group

Staff of the Division of Neuropathology, Institute of Neurology, Queen Square Professor Mike Hanna Dr Matthew Parton Dr Chris Turner Dr Shamima Rahman Dr Ros Quinlivan Dr Rahul Phadke

Staff of the MRC Centre for Neuromuscular Disease

Funding Myositis Support Group