An Australia-wide molecular study of *Neisseria gonorrhoeae* identifies frequent occurrence of a key cephalosporin resistance mechanism

QPID Laboratory, QCMRI, The University of Queensland, Australia

WHO estimates: approx. 100 million cases of gonorrhoea globally.
→ Disease burden is highest in low income settings.

Rates are increasing (15,675 notifications in Aust. in 2014)

Background

- Rise in ceftriaxone MICs → decreased susceptibility (DS)
- Increasing reports of ESC treatment failures, primarily cefixime but also ceftriaxone in cases of pharyngeal infections.
 → Mostly due to the dissemination of resistant clones
- Predominantly mosaic Penicillin Binding Protein 2 (PBP2) 7363 and 1901 MLST types.
Mosaic PBP2; HOW?

- Altered PBP2 protein → Mosaic PBP2; arising from recombination events.

H041

N. cinerea PBP2

N. perflava PBP2

1 200 400 600 Amino acids

N. flavescens PBP2

F89

Ceftriaxone resistant strain; A8806 Australia 2014

Similar to H041; MIC = 0.5mg/L

H041

N. gonorrhoeae mosaic PBP2 (CRO DS and CEF R)

Where are the H041 and F89 strains?

H041 – No more reports

F89 – No more reports

H041

N. flavescens PBP2

F89

Ceftriaxone resistant strain; A8806 Australia 2014

Similar to H041; MIC = 0.5mg/L

H041

N. gonorrhoeae mosaic PBP2 (CRO DS and CEF R)

associated with MLST types 1901 and 7363

HOWEVER, NG with mosaic-PBP2 is now spreading worldwide.

Associated with MLST types 1901 and 7363

H041

N. gonorrhoeae mosaic PBP2 (CRO DS and CEF R)

N. flavescens PBP2

F89

Ceftriaxone resistant strain; A8806 Australia 2014

Similar to H041; MIC = 0.5mg/L
Phase 1: To better understand the spread of NG and resistance.
- Genotyping isolates from throughout Australia.

Phase 2: Molecular AMR testing of NG NAAT-positive clinical samples
- Focus on the NT.

David Whiley, Tuesday 2pm; Molecular aspects of antimicrobial resistant Neisseria gonorrhoeae

Phase 1:
To better understand the spread of NG and resistance.
- Genotyping isolates from throughout Australia.
 - AMR mutations
 - SNP-MLST = Strain

Sequenom Massarray platform
- Uses MALDI-TOF MS.
- Multiplexing 12 or 14 SNPs per single reaction
- 384 well plate; 10 hours
- Cost per isolate = approx. $15.0 per isolate

Total isolates = 2218 (90.5% isolates in first half of 2012)

Total isolates = 271 (90.5% isolates in first half of 2012)
Dominated by certain strains
- Top 40: 80% of isolates
- Top 10: 50% of isolates
- Top 3: 25% of isolates

Heterosexual
MSM

<table>
<thead>
<tr>
<th>Strain</th>
<th>Total isolates</th>
<th>Gender</th>
<th>male</th>
<th>female</th>
</tr>
</thead>
<tbody>
<tr>
<td>NG1</td>
<td>232</td>
<td></td>
<td>144</td>
<td>89</td>
</tr>
<tr>
<td>NG2</td>
<td>167</td>
<td></td>
<td>162</td>
<td>4</td>
</tr>
<tr>
<td>NG3</td>
<td>151</td>
<td></td>
<td>93</td>
<td>60</td>
</tr>
<tr>
<td>NG4</td>
<td>110</td>
<td></td>
<td>109</td>
<td>1</td>
</tr>
<tr>
<td>NG5</td>
<td>91</td>
<td></td>
<td>97</td>
<td>1</td>
</tr>
<tr>
<td>NG6</td>
<td>65</td>
<td></td>
<td>70</td>
<td>2</td>
</tr>
<tr>
<td>NG7</td>
<td>65</td>
<td></td>
<td>66</td>
<td>2</td>
</tr>
<tr>
<td>NG8</td>
<td>61</td>
<td></td>
<td>65</td>
<td>1</td>
</tr>
<tr>
<td>NG9</td>
<td>57</td>
<td></td>
<td>55</td>
<td>1</td>
</tr>
<tr>
<td>NG10</td>
<td>53</td>
<td></td>
<td>56</td>
<td>1</td>
</tr>
</tbody>
</table>

Strain | Total isolates | Gender | male | female |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NG1</td>
<td>223</td>
<td></td>
<td>144</td>
<td>89</td>
</tr>
<tr>
<td>NG2</td>
<td>167</td>
<td></td>
<td>162</td>
<td>4</td>
</tr>
<tr>
<td>NG3</td>
<td>151</td>
<td></td>
<td>93</td>
<td>60</td>
</tr>
<tr>
<td>NG4</td>
<td>110</td>
<td></td>
<td>109</td>
<td>1</td>
</tr>
<tr>
<td>NG5</td>
<td>91</td>
<td></td>
<td>97</td>
<td>1</td>
</tr>
<tr>
<td>NG6</td>
<td>65</td>
<td></td>
<td>70</td>
<td>2</td>
</tr>
<tr>
<td>NG7</td>
<td>65</td>
<td></td>
<td>66</td>
<td>2</td>
</tr>
<tr>
<td>NG8</td>
<td>61</td>
<td></td>
<td>65</td>
<td>1</td>
</tr>
<tr>
<td>NG9</td>
<td>57</td>
<td></td>
<td>55</td>
<td>1</td>
</tr>
<tr>
<td>NG10</td>
<td>53</td>
<td></td>
<td>56</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LS</td>
<td>neg</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>LS</td>
<td>neg</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>CIPP</td>
<td>neg</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>CMPP</td>
<td>neg</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>LS</td>
<td>neg</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>CMPP</td>
<td>neg</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>LS</td>
<td>neg</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>CMPP</td>
<td>neg</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>LS</td>
<td>neg</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>CMPP</td>
<td>neg</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>LS</td>
<td>neg</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>CMPP</td>
<td>neg</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
</tr>
</tbody>
</table>

1/10/2015
Mosaic-1901; geographic distribution?

Mosaic-1901, geographic distribution?

Mosaic-1901; gender distribution?

Mosaic-1901; gender distribution?

Strain

<table>
<thead>
<tr>
<th>Strain</th>
<th>Total isolates</th>
<th>Gender</th>
<th>Susceptibility profile</th>
</tr>
</thead>
<tbody>
<tr>
<td>NG1</td>
<td>232</td>
<td></td>
<td>LS neg S S S S S</td>
</tr>
<tr>
<td>NG2</td>
<td>167</td>
<td></td>
<td>LS neg S S S S S</td>
</tr>
<tr>
<td>NG3</td>
<td>151</td>
<td></td>
<td>LS neg S S S S S</td>
</tr>
<tr>
<td>NG4</td>
<td>110</td>
<td></td>
<td>LS neg S S S S S</td>
</tr>
<tr>
<td>NG5</td>
<td>98</td>
<td></td>
<td>LS neg S S S S S</td>
</tr>
<tr>
<td>NG6</td>
<td>65</td>
<td></td>
<td>LS neg S S S S S</td>
</tr>
<tr>
<td>NG7</td>
<td>65</td>
<td></td>
<td>LS neg S S S S S</td>
</tr>
<tr>
<td>NG8</td>
<td>61</td>
<td></td>
<td>LS neg S S S S S</td>
</tr>
<tr>
<td>NG9</td>
<td>57</td>
<td></td>
<td>LS neg S S S S S</td>
</tr>
<tr>
<td>NG10</td>
<td>50</td>
<td></td>
<td>LS neg S S S S S</td>
</tr>
</tbody>
</table>

AMR Profile

- **SNP** - **MLST**
- Strain = Strain

Total isolates

- NG1: 232
- NG2: 167
- NG3: 151
- NG4: 110
- NG5: 98
- NG6: 65
- NG7: 65
- NG8: 61
- NG9: 57
- NG10: 50

Pen. - **Tet.** - **Spect.** - **Ceft.** - **Cip.** - **Azith.**

- LS neg S S S S S

Strain

<table>
<thead>
<tr>
<th>Strain</th>
<th>Total isolates</th>
<th>Gender</th>
<th>Susceptibility profile</th>
</tr>
</thead>
<tbody>
<tr>
<td>1901</td>
<td></td>
<td></td>
<td>Pen. Tet. Spect Ceft Cip. Azith</td>
</tr>
<tr>
<td>NG1</td>
<td>232</td>
<td></td>
<td>LS neg S S S S S</td>
</tr>
<tr>
<td>NG2</td>
<td>167</td>
<td></td>
<td>LS neg S S S S S</td>
</tr>
<tr>
<td>NG3</td>
<td>151</td>
<td></td>
<td>LS neg S S S S S</td>
</tr>
<tr>
<td>NG4</td>
<td>110</td>
<td></td>
<td>LS neg S S S S S</td>
</tr>
<tr>
<td>NG5</td>
<td>98</td>
<td></td>
<td>LS neg S S S S S</td>
</tr>
<tr>
<td>NG6</td>
<td>65</td>
<td></td>
<td>LS neg S S S S S</td>
</tr>
<tr>
<td>NG7</td>
<td>65</td>
<td></td>
<td>LS neg S S S S S</td>
</tr>
<tr>
<td>NG8</td>
<td>61</td>
<td></td>
<td>LS neg S S S S S</td>
</tr>
<tr>
<td>NG9</td>
<td>57</td>
<td></td>
<td>LS neg S S S S S</td>
</tr>
<tr>
<td>NG10</td>
<td>50</td>
<td></td>
<td>LS neg S S S S S</td>
</tr>
</tbody>
</table>

AMR Profile

- **SNP** - **MLST**
- Strain = Strain

Total isolates

- NG1: 232
- NG2: 167
- NG3: 151
- NG4: 110
- NG5: 98
- NG6: 65
- NG7: 65
- NG8: 61
- NG9: 57
- NG10: 50

Pen. - **Tet.** - **Spect.** - **Ceft.** - **Cip.** - **Azith.**

- LS neg S S S S S

LS

- neg S S S S S

susceptibility profile

- Pen. Tet. Spect Ceft Cip. Azith
- LS neg S S S S S

Total isolates

- NG1: 232
- NG2: 167
- NG3: 151
- NG4: 110
- NG5: 98
- NG6: 65
- NG7: 65
- NG8: 61
- NG9: 57
- NG10: 50

mPBP2-1901

- NG1: 84
- NG2: 82
- NG3: 17
- NG4: 4
- NG5: 1
- NG6: 0
- NG7: 188

%

- NG1: 11%
- NG2: 13%
- NG3: 13%
- NG4: 1.5%
- NG5: 0.7%
- NG6: 0%
- NG7: 8.1%

Metropolitan

- Dominates metropolitan regions
- Mainly found in VIC and NSW

Aus. States and territories

<table>
<thead>
<tr>
<th>State</th>
<th>762</th>
<th>626</th>
<th>127</th>
<th>205</th>
<th>146</th>
<th>92</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSW</td>
<td>84</td>
<td>82</td>
<td>17</td>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>NT</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>188</td>
<td>818</td>
<td>210</td>
<td>269</td>
<td>146</td>
<td>92</td>
</tr>
</tbody>
</table>

Mosaic-1901; geographic distribution?

- Dominates metropolitan regions
- Mainly found in VIC and NSW

Mosaic-1901; gender distribution?

- Dominates MSM population
- However, isolated from female patients as well

<table>
<thead>
<tr>
<th>Gender</th>
<th>Male</th>
<th>Female</th>
<th>Unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>178</td>
<td>8</td>
<td>3</td>
</tr>
</tbody>
</table>

Heterosexual networks as well
Also typically: resistance to Penicillin (67.5%) and ciprofloxacin (98.4%).

Azithromycin

Most isolates MICs 0.12 - 0.25mg/L. However; → 15% with MIC of 0.5mg/L (breakpoint = 1.0)

Concern:

- These strains just require two mutations to be resistant to both ceftriaxone and azithromycin
- A501P (PBP2) + C2611T (23S) = ceftriaxone and azithromycin resistant.

Concern:

- mPBP2-1901 is a highly successful strain in our population.
 - First described in Aust. ~ 10 years ago;
 - Now comprises 8.1% of the isolate population in Australia
 - Most states and territories.

- Bacterial culture doesn’t ‘flag’ a large proportion of these strains

STRENGTHENING AMR SURVEILLANCE CAPABILITIES IS CRUCIAL
Acknowledgements

Study investigators and collaborators include:

- Baker IDI, NT
- James Ward
- PathWest, WA
- Dr David Speers
- Melbourne Sexual Health Centre, Vic
- Prof Christopher Fairley
- A/Prof Marcus Chen
- MDU, The University of Melbourne, Vic
- Kerrie Stevens
- Women's and Children's Hospital, SA
- Andrew Lawrence
- Royal Darwin Hospital, NT
- Robert Baird
- Kevin Freeman
- PathWest, Royal Perth Hospital, WA
- Julie Pearson
- Queensland Health Forensic and Scientific Services
- Dr Nathan Ryder
- Dr Jiunn-Yih Su
- Kirby Institute, UNSW
- A/Prof Rebecca Guy
- Prof John Kaldor
- Dr Handan Wand
- Dr David Regan
- Miles Beaman
- QPID laboratory, QCMRI, Qld
- A/Prof David Whiley
- Cameron Buckley
- A/Prof Michael Nissen
- A/Prof Theo Sloots
- Prince of Wales Hospital, NSW
- A/Prof Monica Lahra
- Athena Limnios
- Dr Tiffany Hogan
- Ratan Kundu
- Rodney Enriquez
- Namraj Goire
- Pathology Queensland
- Prof Graeme Nimmo
- Dr Cheryl Bletchly
- Fleur Francis
- Sexual Health and Blood Borne Virus Unit, NT
- Dr Thomas Sisley
- NT Sex Health
- Nicky Institute, ADMA
- Dr Michelle Ham</