COMPUTERWORLD OSBC USINESS CONFERENCE

Cloud. Data. Mobile. Open Source.

APRIL 29-30, 2013

Turbo-Charging Open Source Hadoop for Faster, more Meaningful Insights

Gord Sissons Senior Manager, Technical Marketing IBM Platform Computing gsissons@ca.ibm.com

Agenda

- Some Context IBM Platform Computing
- Low-latency scheduling meets open-source
- Breakthrough performance
- Multi-tenancy (for real!)
- Cluster-sprawl The *elephant* in the room
- Side step the looming challenges

IBM Platform Computing

- Acquired by IBM in 2012
- 20 year history in high-performance computing
- 2000+ global customers
- 23 of 30 largest enterprises
- High-performance, mission-critical, extreme scale
- Comprehensive capability

De facto standard for commercial highperformance computing

Powers financial analytics grids for 60% of top investment banks

Over 5 million CPUs under management

Breakthrough performance in Big Data analytics

Technical Computing - HPC

Scalable, comprehensive workload management for demanding heterogeneous environments

Simplified, integrated HPC management software bundled with systems

Analytics Infrastructure Software

High-throughput, low-latency compute and data intensive analytics

- An SOA infrastructure for analytics
- Extreme performance and scale
- Complex Computations (i.e., risk)
- Big Data Analytics via MapReduce

Our worldview – shaped by time critical analytics

- Financial firms compete on the their ability to maximize use of capital
- Monte-Carlo simulation is a staple technique for simulating market outcomes
- Underlying instruments are increasingly complex
- A crush of new regulation

Compute this over 5,000 market scenarios comprised of 200 risk factors over 10 years for all instruments and all portfolios – NOW!

\$ GAINS ON PORTFOLIO

1%

IBM Platform Symphony

- A heterogeneous grid management platform
- A high-performance SOA middleware environment
- Supports diverse compute & data intensive applications
 - ISV applications Many applications in this space are open source
 - In-house developed applications (C/C++, C#/.NET, Java, Excel, R etc)
 - Support for Linux / Power Linux, Windows + other OS
- React instantly to time critical-requirements
- A multi-tenant shared services platform
- Implements a fully compatible MapReduce run-time for open-source Hadoop

Hadoop MapReduce

De-facto "Big Data" standard

- Pioneered at Google / Yahoo!
- Framework for writing applications to rapidly process vast datasets
- More cost effective than traditional data warehouse / BI infrastructure
- Dramatic performance gains
- Java based
- From our perspective: Just another distributed computing problem

IBM Platform Symphony

Workload Manager

Resource Orchestration

IBM InfoSphere BigInsights & Platform Symphony

- Comprehensive platform
- Data at rest, data in motion
- Extensive library of data connectors
- Rich development tools
- Application accelerators
- Web-based management console

Big problems demand big infrastructure

- Exploit threads
 - Power 7+ 2 threads per core vs. 2 threads per core
- High Throughput
 - Extreme memory and I/O bandwidth
- Better Java implementation
 - Optimized JVM on Power 7+
- Superior I/O
 - Massive I/O bandwidth
- Parallel file system
 - Your choice of HDFS or GPFS
- Ideal match for Apache Hadoop MapReduce framework
 - Massively parallel processing across Linux clusters

PERFORMANCE

Berkley SWIM

- "Real-world" MapReduce benchmark synthesize and replay captured *real-world* workloads
- Developed by Yanpei Chen and others at @ UCB https://github.com/SWIMProjectUCB/SWIM/wiki
- Viewed as an advance over existing synthetic MapReduce benchmarks including GridMix2, PigMix, Hive BM etc.
- Represents workloads comprised of short, large and huge jobs stressing disk, network IO, CPU and memory
- Promoted by Cloudera advantages of SWIM promoted at Hadoop World 2011 <u>http://www.slideshare.net/cloudera/hadoop-world-2011-hadoop-and-performance-todd-lipcon-yanpei-chen-cloudera</u>

Benchmark: SWIM: Facebook 2010 Workload

MapReduce/Symphony vs MapReduce/Hadoop

(Ratio of Symphony speed to Hadoop speed over 302 diverse MapReduce jobs)

Benchmark: Contrail

- Open-source software for De Novo Genome Assembly key contributors are Jeremy Lewi, Avijit Gupta, Ruschil Gupta, Michael Schatz and others
- Sequencing large genomes is too large a problem for conventional algorithms
- It turns out that the *deBrujin graph* fundamental to genome sequencing is readily represented as key-value pairs ideal for processing with MapReduce
- Contrail runs a pipeline where each pipeline stage is implemented as a MapReduce job to exploit parallelism

CCATTCTGACTGCAACGGGCAATATGTCTCTGTGTGGATTAAAAAAAGAGTGT

GATATTEC

Benchmark: Contrail

2.3x FASTER!

Record Terasort results on Power 7+

Hardware	
Cluster	1 PowerLinux P7+ Master Node
	9 PowerLinux P7+ Slave Nodes
CPU	16 processor cores per server (128 total)
Memory	128 GB per server (1280 total)
Internal Storage	6 600GB internal SAS drivers per server (36 TB total)
Storage Expansion	24 600GB SAS drives in IBM EXP24S SFF Gen2-bay Drawer, per server(144 TB total)
Network	2 10Gbe connections per server
Switch	BNT BLACE RackSwitch G8264
Software	
OS	Red Had Enterprise Linux 6.2
Java	IBM Java 64bit Version 7 SR1
HDFS	Hadoop v1.1.3 (1 node as NameNode and 9 nodes as DataNode)
Platform Symphony MapReduce	Advanced Edition 6.1.0.1
	1 node as Management Host and 9 nodes as Compute Hosts

IBM internal unaudited result – details of Intel system benchmark at http://www.hp.com/hpinfo/newsroom/press_kits/2012/HPDiscover2012/Hadoop_Appliance_Fact_Sheet.pdf

Understanding the advantage

- Symphony 6.1 can schedule ~50x more tasks per second
- Hadoop results taken from Hadoop World 2011 performance presentation, Lipcon & Chen

IBM Platform Symphony is (much) faster because:

Efficient C language routines use CDR (common data representation) and IOCP rather than slow, heavy-weight XML data encoding)

Network transit time is reduced by avoiding text based HTTP protocol and encoding data in more compact CDR binary format

Platform Symphony has a more efficient "push model" that avoids entirely the architectural problems with polling

Many performance optimizations

- C++ native code
- Optimized binary network protocols
- Fast object serialization
- JVM pre-start & re-use
- Generic slots enabling full cluster utilization
- Efficient push-based scheduling model
- Uses Symphony common data for JAR transport
- Shuffle-stage optimizations
- Intelligent pre-emption

MULTITENANCY

Different workloads demand different SLAs

"I need an updated counterparty credit risk analysis for the final earnings report by 2:00 pm"

"I wonder if teenagers in California still think red shoes are cool?"

Cluster Sprawl - Silos of underutilized, incompatible clusters

Dynamic resource sharing among heterogeneous tenants

Workload Manager

Resource Orchestration

Ensuring SLAs is critical

Multiple deployment options

- Pure Data for Hadoop appliances
- Power and Intel based Big Data Reference Architectures
- Your choice of distribution
 - IBM BigInsights, Cloudera, MAPR, Apache, Hortonworks etc..
- Your choice of file system

HDFS or GPFS

Summing up

A unique solution for open-source Big Data Analytics

- Exceptional performance
- Lower infrastructure cost
- Multiple Hadoop distributions
- Simplified application life cycle management
- Sophisticated multi-tenancy
- Optional GPFS file system

Next steps

- Review the benchmarks
- Take the TCO challenge
- Contact us

IBM Platform Symphony Total Cost of Ownership Calculator	
Infrastructure Number of severs in the cluster Aurage cat per sever Annual power cats per server Sandiaction Burdranmat	IBM Platform Symphony can provide significant savings for organizations deploying distributed applications and big data analytic motifulasi. Symphony is usually none cost effective for the following reasons: The low-latency scheduling and middleware processes tasks faster meaning that less handware is required to meet
Application environment Number of Compute Intensive applications Number of goda/ Madoop applications 2 Additional Application Detail	 Symphony's sophisticated resource sharing policies enable multiple-departments, applications and users to share a common grid reducing the amount of infrastructure investment required Because Symphony can the much high resource utilization than competing and managers, the rate of cluster growth can be slowed, further reducing instructure, power and facilities costs.
Percentage of jobs with short-running tasks 1 40 Efficiency gain for short-running tasks 1 200 Efficiency gain for long-running tasks 1 10	The results of our high-level analysis are shown below. You can request that a more detailed report be sent to you by a-mail. 9 9 9 9 19 10 10 10 10 10 10 10 10 10 10 10 10 10
Personnel System administrators 5 Business Assumptions	EOY1 EOY2 EOY3 Other Ond Manager 55.000.653 56.725.101 87.004.427 BU Pattern Sympt
Cluster growth rate per year 🚺 15 Reset values	Itedoop on the IBM SmartCloud Enterorise
	Learn to create your own

http://www.ibm.com/platformcomputing/products/symphony/

http://www.ibm.com/platformcomputing/products/symphony/highperfhadoop.html

http://www-03.ibm.com/systems/power/software/linux/powerlinux/

http://bigdatauniversity.com

Gord Sissons - gsissons@ca.ibm.com

Enroll now!

