Recent Developments in Infertility Treatment

John T. Queenan Jr., MD
Professor, Dept. Of Ob/Gyn
University of Rochester Medical Center
Rochester, NY

Disclosures

• I don’t have financial interest or other relationships with industry relative to the topics being discussed.

Audience Response Question #1

• In the last five years the evaluation and treatment of infertility has become:
 – A) more complicated
 – B) less complicated
 – C) stayed the same

There is no right answer
Audience Response Question #2

- As a result of trends you've seen over the last five years, the chance that you will refer an Infertility patient to a specialist is:
 - A) more likely
 - B) less likely
 - C) no change

Two Main Topics

- The work-up of the Infertile patient has just been simplified.
- There is a new technology in ART that will change the way infertility treatment is performed (and its not PGS)

Infertility: When to Evaluate

<table>
<thead>
<tr>
<th>Patient</th>
<th>Evaluate</th>
</tr>
</thead>
<tbody>
<tr>
<td>A healthy woman having unprotected intercourse</td>
<td>After year</td>
</tr>
<tr>
<td>Healthy woman over 35 yrs.</td>
<td>After 6 months</td>
</tr>
<tr>
<td>Irregular menses, known or suspected uterine/tubal disease, Stage 3-4 endometriosis, male factor</td>
<td>Don't wait</td>
</tr>
</tbody>
</table>
With outcomes-based medicine, many diagnostic steps are no longer recommended

- Post-coital test of cervical mucus
- Rubin’s test or sono contrast test of tubal patency
- Endometrial biopsy for luteal phase deficiency or for culture
- Sperm function tests (e.g. anti-sperm antibodies)
- Chlamydia antibody testing
- Varicocele assessment
- Routine diagnostic laparoscopy
- Routine diagnostic hysteroscopy

With outcomes-based medicine, many diagnostic steps are no longer recommended

- The Clomiphene Challenge Test has been replaced by better methods (Anti-Müllerian Hormone and Antral Follicle Count)

Infertility: How to Begin

Patient
- Comprehensive medical, family, social and reproductive history
- Physical exam
- Consider ultrasound, ovarian reserve testing

Partner
- Semen analysis
- PMHx
- PSHx
Infertility: What to Ask

• C Coitus?
• O Ovulation?
• S Sperm?
• T Tubes?

Infertility: What to Ask

• Coitus?
 • Frequency, dyspareunia, ED, premature ejaculation, timing, out of town travel, other sexual dysfunction

• Ovulation?
 • Can be assumed to be normal if the patient has regular 24-35 day cycles

ASSESSMENT OF OVULATION

History
Menstrual calendar
BBT charting
Progesterone over 3 ng/mL
Ovulation predictor kits
Endometrial biopsy
Sonography
Ovulatory dysfunction: The First Step
Correct the Underlying Disease

- BMI < 20: Gain weight
- Hyperprolactinemia: Medical correction
- Androgen Excess: Medical correction
- Thyroid Disorder: Medical correction
- BMI > 30: Lose weight

Ovarian Reserve Assessment:

Reasonable candidates:
- Women of advanced age (>35)
- Women with unexplained infertility at any age
- Prior chemo/XRT/oophorectomy/ovarian cystectomy
- Smoking
- Family history of early menopause
- Poor response to gonadotropins

Ovarian Reserve Assessment:

These are associated with poor response to ovarian stimulation and failure to conceive

- Day 2-3 FSH: high values (over 10 to 14)
- Antral Follicle Count: less than 10 follicles (measuring 2-9 mm)
- Anti-Müllerian Hormone: low (less than 1 ng/mL)
Male Factor Infertility
Male factor accounts for 35-40% of infertility

Semen analysis should be early diagnostic step

• If abnormal, any invasive diagnostic procedures in the woman should be held until decisions are reached regarding the man.

• If normal, attention directed to the female.

Normal values for semen analysis

1. Volume: > 1.5mL (was >2.0)
2. pH: > 7.2
3. Sperm concentration: > 15 x 10^6/mL (was >20)
4. Total sperm count: > 39 x 10^6/ejaculate
5. Motility: > 58%, progressive motility > 32%
6. Morphology: > 4% using “Strict criteria”

Based on samples from 4000 men whose time to pregnancy exceeded 12 months. 1-sided lower reference limit with 95% conf. intervals

WHO Laboratory Manual, 2015

Hysterosalpingogram

• Contrast injected through the cervix
• Can evaluate uterine cavity and patency of fallopian tubes
• Laparoscopy is more expensive but can identify endometriosis and adhesions
Diagnostic Evaluation of Infertility in the Female

• Evidence based
• Cost effective
• Greatly simplified
• Should always involve both partners

ASRM Practice Committee Guidelines 2015

Audience Response Question #3

• In the setting of IVF, controlling for the same number of embryos at transfer, which would have a higher live birth rate:
 – A) fresh embryo transfer
 – B) thawed, previously frozen embryo transfer
 – C) no significant difference

This time, there is a right answer

Cryopreservation of Reproductive Tissues

<table>
<thead>
<tr>
<th>Tissue</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sperm</td>
<td>1953</td>
</tr>
<tr>
<td>Embryos</td>
<td>1983</td>
</tr>
<tr>
<td>Oocytes</td>
<td>2013</td>
</tr>
</tbody>
</table>
Summary of Trends

Fresh vs Frozen

- IVF typically gives us lost of eggs/embryos to work with
- There is a trend towards putting back fewer embryos in order to reduce multiples
- Cryopreservation started in mid-1980s
- Frozen embryo technology provided a place for surplus embryos

Two types of freezing methods were discovered in the 1980s. Fast and slow:

- When a cell freezes two bad things happen, water leaves the cell to form external ice, and the intracellular ice crystals form and damage organelles.

Embryo surrounded by crystal formation
Traditionally, pregnancy rates in Frozen cycles lagged behind Fresh cycle PR

- Suboptimal transfers
- Embryo prioritization
- By definition, the patient will always be older
- Cryo-thaw survival (70%)

However

There were certain clinical conditions where you skipped a fresh transfer, and did not prioritize embryos into Fresh and Frozen groups

Ovarian Hyperstimulation Syndrome

- Elective cryopreservation of all embryos
- Frozen cycle PR > Fresh cycle PR
 - Queenan JT et al. *Hum Reprod* 1997
 - D’Angelo A. *Semin Reprod Med* 2010
RCT: IVF patients randomized to fresh or frozen-thawed embryo transfer

"ATTRIBUTABLE RISK OF IMPLANTATION FAILURE D/T ENDOMETRIAL RECEPTIVITY IN FRESH GROUP: 64.7%"

Shapiro B et al Fertil Steril 2011;96:344-8

Vitrification
The process of freezing where a substance turns to glass

Amorphous Ice: Solid form of water where the molecules stay randomly arranged.

Vitrification

• Made possible oocyte freezing + thawing
 – Oncofertility
 – Egg banking
 – Donor egg banking
A small hole is made by the laser between two cells for fluid to escape.

In a hyperosmotic (sucrose) bath, water is drawn out and the blast begins to collapse.

Fully collapsed and ready to be frozen. After thawing, re-inflation occurs in about 2 hrs.

Embryo Cryopreservation Thaw Survival Rates

<table>
<thead>
<tr>
<th>Method</th>
<th>Survival Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slow-freeze/slow thaw</td>
<td>70%</td>
</tr>
<tr>
<td>Vitrification</td>
<td>94-98%</td>
</tr>
</tbody>
</table>

2016 SART National Trends in Clinical Outcomes
Infants born following IVF are at increased risk for:

- Preterm birth
- Low birth weight
- Perinatal mortality
- Congenital anomalies

And these are not solely related to multiple gestations

Pregnancies from fresh IVF cycles are more likely to be affected by disorders of placentation:

- IUGR
- Pre-eclampsia
- First trimester pregnancy loss rate
- Stillbirths

Than pregnancies conceived following frozen embryo transfer

Marino et al. JPIIF 51:11-50, 2014
Summary

- The infertility workup has been simplified and is much easier than before
- Technologic advances in freezing of eggs and embryos will lead to fewer multiple gestations, higher pregnancy rates and better outcomes

Questions?