35th Annual Hands-On Relay School
MARCH 12–16, 2018

Washington State University
Pullman, Washington

Sponsored by:
Western Energy Institute | Washington State University

One Week for Only $700
Applications Accepted November 1, 2017 – January 15, 2018
“This program is an incredible resource. All the instructors display great passion for the industry and the desire to pass on knowledge.”

“Nowhere else can you learn this much in one week.”

“The structure of taking senior and experienced technicians and letting them teach, walk through relays, and pass that experience on to upcoming technicians. What an outstanding concept.”

“The school provides excellent hands-on training with equipment that I am directly exposed to daily, along with the necessary theory to provide a strong understanding of protection.”
OBJECTIVES OF THE HANDS-ON RELAY SCHOOL

The Hands-On Relay School is a professional development short course that trains protective relay technicians, electrical/power plant technicians, engineers, and protective relay test specialists.

Students are enrolled in one of seven tracks for the duration of the school.
- Basic
- Distribution
- Transmission
- Generation
- Electromechanical
- Automated Relay Testing
- Theory

Students participating in these tracks will:
- Become familiar with manual or automated test methods for a variety of protective relays and test equipment.
- Gain valuable knowledge relating to relay applications and operating characteristics.
- Exchange ideas and resolve problems in an open forum.
- Learn preventative and corrective maintenance methods.

Application
School enrollment is limited, and priority is given to organizations providing Lab Facilitators, Lecturers, Steering Committee support, and Western Energy Institute member utilities. Refer to important application and enrollment procedures at the end of this brochure.

Call for Lab Facilitators
If you are an experienced relay technician who is willing to share your knowledge with others, you can attend the Hands-On Relay School as a lab facilitator. Lab facilitators work with groups of three students in the hands-on labs testing relays and may attend all classroom lectures and school activities. Lab facilitators are not required to pay the application fee and their company receives priority points for students applying for the school. If you are interested, contact WSU Professional Education at 800-942-4978 or 509-335-3530 or sign up at http://cm.wsu.edu/hrs.
This track is for those students who wish to focus on the calibration, maintenance, testing, and understanding of basic relays. The selection may include overcurrent, differential, distance, reclosing, voltage, or frequency relays. This track is an excellent choice for beginning technicians. [48 students maximum]

Students in this track will:

- Attend the Introduction to System Protection lecture series on Monday.
- Choose four Concurrent Open Lectures to attend on Tuesday.
- Attend the Friday Feature Lecture Presentations.
- Wire an overcurrent and a reclosing relay to a breaker simulator to test and troubleshoot an entire protection circuit.
- Perform hands-on testing in the lab on the following relays:
 - **ABB**: CO, HU, RC
 - **Basler**: BE1-81O/U, BE1-51
 - **GE**: CEY51A, JBCG
 - **SEL**: 551

Introduction to System Protection Lecture Series

This lecture series is for beginning relay technicians, newcomers to the relaying field, or anyone who needs the basics. We start with the very basics of relaying to provide a foundation of knowledge upon which to build. The closest thing to “Relaying for Dummies” that Hands-On Relay School has to offer! Taught by experienced system protection personnel, this lecture series will be presented on Monday only from 7:45 AM – 3:00 PM.

Topics include:

- Introduction to Protection Basics and Terminology
 - *Brent Carper, 3AC Engineering*
- Technicians Basic Math Review
 - *Ron Alexander, Bonneville Power Administration*
- Introduction to Relay Coordination Principles
 - *Abdur Rehman, Puget Sound Energy*
- Lessons Learned from the Field
 - *Paul Luther, Puget Sound Energy*
This track is for those students who wish to focus on the testing and understanding of multifunction microprocessor relays and recloser controllers used for distribution protection. The selection of relays may include overcurrent, transformer differential, reclosing, synch-check, and frequency protection.

[18 students maximum] [Laptop Computer Required]

Students in this track will:

- Attend the Distribution Overview lecture.
- Choose six Concurrent Open Lectures to attend.
- Attend the Friday Feature Lecture Presentations.
- Perform hands-on testing in the lab on the following relays:
 - ABB: REF615
 - Basler: BE1-11F
 - Beckwith: M7679
 - Cooper: Form 6
 - SEL: 351A, 387

Distribution Protection Overview Lecture
Kevin Damron, Avista, Spokane, WA

This lecture will review fundamental principles of distribution system protection, including IEEE device designations, fault current calculations, coordination of overcurrent protection, and reclosing schemes.
This track features both electromechanical and microprocessor-based multifunction relays used for protection of transmission equipment, including distance and line current differential protection. [24 students maximum] [Laptop Computer Required]

Students in this track will:
- Attend the Transmission Overview lecture.
- Choose six Concurrent Open Lectures to attend.
- Attend the Friday Feature Lecture Presentations.
- Perform hands-on testing in the lab on the following relays:
 - **ABB**: IRD9, KD10
 - **Beckwith**: M-3311A
 - **SEL**: 411L, 487E

Transmission Protection Overview Lecture TBA

This lecture will review fundamental principles of transmission line protection. Concepts of distance protection, directional overcurrent, line differential, and pilot protection schemes will be discussed.
This track features electromechanical and multifunction microprocessor relays used for transformer and generator differential, over-excitation, stator ground, reverse power, synch-check, negative sequence, and loss of field protection of generators.

[24 students maximum] [Laptop Computer Required]

Students in this track will:
- Attend the Generation Protection Overview lecture.
- Choose six Concurrent Open Lectures to attend.
- Attend the Friday Feature Lecture Presentations.
- Perform hands-on testing in the lab on the following relays:
 - ABB: REG670
 - Beckwith: 3425A
 - GE: CEH51, G60
 - SEL: 700G

Generation Protection Theory and Application Overview Lecture
Wayne Hartmann & Jon Grooters, Beckwith Electric

This lecture will review fundamental principles of generation protection theory and application with a focus on industry standards and best practices.
This track focuses exclusively on electromechanical relays used for line, bus, transformer, or generator protection. More hands-on effort is spent on troubleshooting relay problems, calibrating relays, adjustment techniques, and verifying results. [12 students maximum]

Prerequisite: Basic track or related experience.

Students in this track will:
- Attend their choice of Distribution, Transmission, or Generation Protection Overview Lectures.
- Choose six Concurrent Open Lectures to attend.
- Attend the Friday Feature Lecture Presentations.
- Perform hands-on testing in the lab on the following relays:
 - ABB: CA, CVE1, IRD
 - GE: BDD, CEB52, CEH, GCX
RELAY SCHOOL

AUTOMATED TESTING TRACK

This track is intended for technicians who already understand relay operating principals, have experience in manual testing, and are ready to learn automated testing methods.

[student maximum varies] [Laptop Computer Required]

Note: This track is NOT recommended for those relay technicians who are just starting out. The emphasis of this track is on the test equipment and software, not on the relays. The hands-on labs are taught by the test equipment and software manufacturers, not by the relay manufacturers.

Prerequisite: Experience in manual relay testing and computer use. A laptop computer will be used to communicate with the relays and/or the test set. All students must have administrative rights to their laptop, with the appropriate software pre-loaded.

Students in this track will:

- Attend an Overview Lecture provided by the test equipment or software manufacturer.
- Choose six Concurrent Open Lectures to attend.
- Attend the Friday Feature Lecture Presentations.
- Perform hands-on testing in the lab using one of the following testing software platforms:
 - Doble
 - Enoserv RTS
 - Manta
 - Megger AVTS
 - Omicron

Some test software vendors will offer both a Beginning and an Advanced section, depending on enrollment and skill level of the students. Beginning automated testing still requires a prerequisite understanding of manual testing.
This track provides more in-depth training on the application and theory of operation of protection systems utilized in the power system. This track does not normally include any hands-on training with relays, but will include some hands-on use of your laptop. [Laptop Computer Required]

Emphasis this year will be on Transmission concepts and applications.

Note: The theory track is for the journeyman relay technician and relay engineer. It is NOT recommended for those relay technicians who are just starting out. Instructors and lecturers for the theory track are considered to be experts in their field. Students are expected to bring their own laptop PC with administrative privileges over the operating system sufficient to load vendor software.

Students in this track will:
- Attend the Transmission Overview lecture.
- Choose six Concurrent Open Lectures to attend.
- Attend the Monday and Tuesday PM and all day Wednesday and Thursday Lectures.
- Attend the Friday Feature Lecture Presentations.
- Attend the advanced topic lectures throughout the week, as follows.

Transmission Line Protection
Brad Heilman, Schweitzer Engineering Laboratories, Inc

Covers transmission-level line protection elements and high-speed communications-aided tripping schemes. This includes step distance, overcurrent, line current differential, and other more advanced protection elements (out of step blocking/tripping, single pole tripping, etc.)

Remedial Action Schemes (RAS)
Dan Goodrich, Bonneville Power Administration

Topics include what is (and is not) a RAS, their purpose, types of RAS, and their hardware and logic. This will be a “RAS-101” type course, with time allotted for questions, so no advanced knowledge of RAS is required.
Transformer Protection
Wayne Hartmann, Beckwith Electric

Why do transformers fail? A review of protection principles and modern technology differences and advantages including analysis tools to view relay operations. This lecture will include overcurrent, differential, through faults, and CT performance. We will also cover IEEE C37.91 “Guide for Power Transformer Protection.”

Power System Operations
Rich Hydzik, Avista

What does it take to drive the power system? Keeping substation voltages within schedule, preventing lines from overloading, and anticipating the next outage can be difficult tasks. Lecture will cover how system operators control voltage/vars, utilize Automatic Generation Control (AGC) to balance load to generation in real time, and maintain overall stability of the power system.

End-to-End Testing
Chris Gallacher and Greg Sharpes, Avista Utilities

Covers testing of line relays that employ communication aided tripping schemes. The lecture includes a hands-on lab that simulates testing of communications-aided tripping schemes between two substations.

Please note: Includes hands-on exercises requiring students to bring their own laptop PC, with administrative rights.

Phasor Measurement Units (PMUs)
Galina Antonova, ABB, Inc.

Synchrophasors and phasor measurement units (PMUs): what they are, why they are needed and how to use them in power systems. Theory, implementations, installation and applications will be discussed. A brief summary of relevant standards will be given.
The Hands-On Relay School offers twelve lectures on a wide range of topics relevant to the trade. Each lecture is one hour long and given a total of three times. Students can attend up to six lectures of their choosing.

Digital Logic for Protection and Control
Kevin Damron, Avista Utilities

An introduction to digital logic and symbols used for protective relaying. The class will compare traditional hardwired schematic logic to software-based programmed logic with hands-on classroom exercises converting between the two.

DNP 3.0
TBA

An introduction to substation automation and control using Distributed Network Protocol (DNP) 3.0. Protocol can travel over various communications standards and mediums to facilitate situational awareness and control either locally in the substation or remotely from a control center.

Fault Analysis for Technicians
Ken Workman, Schweitzer Engineering Laboratories, Inc.

Event reports continue to be an invaluable feature in microprocessor-based relays. Some events are relatively straightforward to analyze, and others require experience and considerable knowledge of the power system and protective relay system in order to find the root cause. This session provides an outline of the event analysis process, several real-world event examples, time to evaluate them, and solutions.

In-Service Testing
Bryan Focht, Portland General Electric & Paul Luther, Puget Sound Energy

An overview of methods for proving relay current and voltage inputs are accurate upon equipment energization. Final inspection, relay diagnostics, and recordkeeping with an eye towards NERC compliance are covered.
Mho Testing Techniques & Math 1 & 2
Roger Allen, ACS Professional Staffing

Learn or re-visit the considerations to take and the math behind selecting the voltages and currents to test the characteristics of phase-to-phase & 3-phase mho distance units effectively and efficiently. Students participate in phase-to-phase voltage & current calculations. Relays are tested to demonstrate those calculations. Students will also learn and practice selecting voltages and currents to test phase-to-phase mho distance elements without creating an undesirable phase-to-ground mho distance element operation. This is two 60 minute lectures back-to-back to cover all objectives.

Phasors
Ron Alexander, Bonneville Power Administration

Phasors are the universal language of system protection technicians and engineers. This lecture emphasizes the need for a basic knowledge of phasor diagrams and their use in understanding the power system. Topics include load flow phasor analysis, fault phasor analysis, and using phasors to determine the phase angle across delta-wye transformer banks.

Symmetrical Components 1
Stephen Marx, Bonneville Power Administration

Basic principles of symmetrical components with explanation of phasors, per unit system, and symmetrical component equations using sequence networks. Suggested prerequisite for Symmetrical Component 2 class.

Symmetrical Components 2
Stephen Marx, Bonneville Power Administration

Analysis of power system elements with symmetrical components sequence network and network connections for each power system fault types. Samples of protective relay applications using symmetrical component method. Suggest attending Symmetrical Components 1 lecture as a prerequisite.
CONCURRENT OPEN LECTURES

The X, Y and Z of Circuit Breaker Control
Brent Carper, 3AC Engineering

Circuit breakers are required by IEEE Standard C37.11 to have internal factory wiring and auxiliary relays to perform functions such as anti-pumping, close seal-in, trip-free, and permissive control. The schematic and internal wiring within the circuit breaker to accomplish these functions can be confusing. This lecture will explain the X/Y/LC/69 schemes and other aspects of breaker control using actual breaker schematic examples and animated logic, and a breaker simulator will be used to demonstrate seal-in and anti-pumping.

Transformer Protection
Scott Cooper, OMICRON Energy

An overview of power transformer protection practices. Emphasis is placed on solutions to the challenges of effective protection, including transformation ratio, transformer connection, current transformer connections, zero sequence current elimination, inrush, and over-excitation. Differential relay operations for various fault types and locations are analyzed.

Two-& Three-Winding Transformer Connections and Circulating Currents
Abdur Rehman and Jason Hall, Puget Sound Energy

This presentation explores common 2- and 3-winding transformer connections and how positive, negative, and zero-sequence currents circulate during phase and ground fault conditions. Transformer sequence networks and associated symmetrical components are analyzed.
FRIDAY FEATURE PRESENTATIONS

CCVT Transients
Kevin Gowan, Puget Sound Energy

Capacitively-coupled voltage transformers (CCVTs) are often used for transmission potential sensing. Following a design change, Puget Sound Energy (PSE) began to notice arcing on CCVT secondary circuits during routine switching that was damaging relay and communications equipment and presenting a hazard to substation personnel. In this presentation Kevin summarizes a study undertaken by PSE to better understand and mitigate the phenomenon using live testing and high-speed data collection.

Protection System Misoperations
Rich Bauer, NERC

NERC and the industry at large have begun to investigate causes of protection system misoperations with the goal of reducing them. Discussion will cover how NERC collects and aggregates protection system performance information, common causes of misoperations, the initiatives and standards being proposed.
2018 SCHEDULE AT A GLANCE

The Hands-On Relay School is held on the Washington State University campus in Pullman, Washington. Evening events and Sunday check-in registration are held at the University Inn Best Western in Moscow, Idaho, or as noted.

Sunday, March 11

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>3:00-6:00 PM</td>
<td>Facilitator Lab Set Up (EE/ME 44)</td>
</tr>
<tr>
<td>5:30-7:30 PM</td>
<td>Registration & Reception (University Inn)</td>
</tr>
<tr>
<td>7:00-8:00 PM</td>
<td>Lab Facilitator Meeting (University Inn)</td>
</tr>
</tbody>
</table>

Monday, March 12

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>6:45-7:30 AM</td>
<td>Registration</td>
</tr>
<tr>
<td>7:30 AM-Noon</td>
<td>Opening Announcements</td>
</tr>
<tr>
<td></td>
<td>Safety Presentation</td>
</tr>
<tr>
<td></td>
<td>Overview Lectures</td>
</tr>
<tr>
<td></td>
<td>Concurrent Open Lectures</td>
</tr>
<tr>
<td></td>
<td>Introduction to System Protection Lecture Series</td>
</tr>
<tr>
<td>1:00-3:00 PM</td>
<td>Intro to System Protection Series, continued</td>
</tr>
<tr>
<td>1:00-5:00 PM</td>
<td>Hands-on Lab Instruction</td>
</tr>
<tr>
<td>5:00 PM</td>
<td>Optional Social Get-Together at Birch & Barley Restaurant</td>
</tr>
</tbody>
</table>

Tuesday, March 13

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:30 AM-Noon</td>
<td>Concurrent Open Lectures</td>
</tr>
<tr>
<td>1:00-5:00 PM</td>
<td>Hands-on Lab Instruction</td>
</tr>
<tr>
<td>6:30-9:00 PM</td>
<td>Suppliers Showcase (University Inn)</td>
</tr>
</tbody>
</table>

Wednesday, March 14

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:30 AM-Noon</td>
<td>Hands-on Lab Instruction</td>
</tr>
<tr>
<td>1:00-5:00 PM</td>
<td>Hands-on Lab Instruction</td>
</tr>
<tr>
<td>6:30-9:00 PM</td>
<td>Banquet & Entertainment (University Inn)</td>
</tr>
</tbody>
</table>

Thursday, March 15

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:30 AM-Noon</td>
<td>Hands-on Lab Instruction</td>
</tr>
<tr>
<td>1:00-5:00 PM</td>
<td>Hands-on Lab Instruction</td>
</tr>
</tbody>
</table>

Friday, March 16

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:30-8:00 AM</td>
<td>Closing Remarks</td>
</tr>
<tr>
<td>8:00-11:30 AM</td>
<td>Friday Feature Presentations</td>
</tr>
</tbody>
</table>
RELAY SCHOOL

SPONSORS

Professional Education
Academic Outreach and Innovation
WASHINGTON STATE UNIVERSITY

Western Energy Institute

STEERING COMMITTEE

Cliff Harris Committee Chair, Idaho Power Company
Karl Cabrera Salt River Project
David Downing San Diego Gas & Electric
Bryan Focht Portland General Electric
Chris Gallacher Avista Utilities
Scott Hanson Washington State University
Beverly Jones Woolf Western Energy Institute
Tamara Kirk Washington State University
Stephen Marx Bonneville Power Administration
Pat Phillips Seattle City Light
Travis Rider Pacific Gas & Electric Company
Greg Sharpes Avista Utilities
Tanyl Tinhof PacifiCorp
Randy Turnley Puget Sound Energy
Bill Unbehaun Tacoma Power
Darryl Walker Puget Sound Energy
Louis Wright Bonneville Power Administration
Diana Zoren Western Energy Institute
The Hands-On Relay School Steering Committee gratefully acknowledges the following organizations for their generous contributions of equipment and support personnel.

3AC Engineering
ABB Power T&D Company Inc.
ACS Professional Staffing
Avista Utilities
Basler Electric Company
Beckwith Electric Company
Benton County PUD
Bonneville Power Administration
BSC Engineered Systems
Central Electric Cooperative Inc.
Central Lincoln PUD
Chelan County PUD
City of Richland
Clark Public Utilities
Cooper Power Systems
Doble Engineering Company
Douglas County PUD
Emerson
Energy Northwest
ENOSERV
Eugene Water & Electric
Franklin County PUD
GE Digital Energy – Multilin
Grant County PUD
Idaho Power Company
Manta Test Systems
Matanuska Electric Association
Megger
MWH
NorthWestern Energy
NV Energy
OMICRON
PacifiCorp
Pacific Gas & Electric Company
Peak Measure
Pegasus–Global
Portland General Electric
POWER Engineers
Power Testing and Energization Inc.
PPL Montana
Puget Sound Energy
Relay Application Innovation
RFL Electronics Inc.
RuggedCom
Sacramento Municipal Utility District
Salt River Project
San Diego Gas & Electric
Schneider Electric
Schweitzer Engineering Laboratories
Seattle City Light
Siemens
SMC Inc.
Snohomish County PUD
Tacoma Power
Tri-State G&T
U.S. Army Corps of Engineers
U.S. Bureau of Reclamation
Washington State University
Western Area Power Administration
Western Energy Institute
Application Process and Fees

- Application is online at http://cm.wsu.edu/hrs

- School fee of $700 includes electronic copies of lecture notes, Sunday night reception, Tuesday night Vendor Showcase, Wednesday night banquet meal, break refreshments, and parking fees.

- Payment is due by the start of the school. There will be a $50 late fee assessed to any registrant who has not paid by 30 days after the school.

- Priority is given to utilities providing lab facilitators, lecturers, steering committee support, and Western Energy Institute member utilities, if the application is received by January 15, 2018. Remaining slots will be filled on a first-come, first-served basis.

- Applicants select which track they wish to attend in order of preference. Every effort will be made to place students into their preferred track, but track placement is by availability and subject to the priorities as described above. Many tracks will fill up and students may not be able to get their preferred track. If we are unable to place you in a track you have selected, or in an acceptable substitute track, your full application fee will be refunded.

- Students will be notified in writing no later than February 5, 2018, of their acceptance into the school and track placement. **You are not accepted to attend unless you receive the confirmation of acceptance from WSU.**

- Questions? Call 800-942-4978 or 509-335-3530 or email us at handsonrelay@wsu.edu. Visit our website at conferences.wsu.edu.
SCHOOL INFORMATION

Accommodations and Travel
Please make your own travel and hotel reservations once you have received registration confirmation. The Pullman/Moscow Airport is served by Alaska/Horizon Airlines. Spokane International Airport is 80 miles north of Pullman. Holiday Inn Express (509-334-4437) in Pullman, and the University Inn (208-882-0550) in Moscow, Idaho, have rooms blocked for this event and all will provide local transportation upon request.

Cancellation Policy
Your complete application fee will be refunded if WSU receives your written cancellation notice by February 21, 2018. Cancellations made after February 21 are subject to a processing fee of $350. Students who do not attend and have not cancelled by March 8 are responsible for the full application fee. Substitutions may be made at any time.

Cancellations and substitutions should be emailed to: handsonrelay@wsu.edu.

Program Changes and Cancellations
WSU reserves the right to make changes in programs or speakers or to cancel programs if enrollment criteria are not met. In the unlikely event that this school is cancelled, Washington State University’s liability is limited to refund of registration fees. If we are unable to place you in a track you have selected or an acceptable substitute track, your full registration will be refunded.
Americans with Disabilities Act
Accommodations for individuals who qualify under the Americans with Disabilities Act are available upon request. Please contact us at least ten days before the school at 800-942-4978 or 509-335-3530, email wsuconf@wsu.edu

Continuing Education Units (CEUs)
CEUs are available to participants who complete a CEU enrollment form prior to the start of the school and satisfactorily complete the requirements for the class. CEUs are nationally recognized units of achievement that may be used as evidence of professional development and for job advancement. One CEU is awarded for every 10 hours of instruction, totaling 3.6 for this school. A fee of $10 must accompany the registration fee to receive the CEU credits.

Promotional Video
Need help convincing your organization about the benefits of attending the Hands-On Relay School? Contact us today to request your copy of our promotional video that demonstrates the invaluable training experience of attending this school or view the video at www.youtube.com/watch?v=Tu5GmeJg7r0.

Call 800-942-4978 or 509-335-3530 or email us at wsuconf@wsu.edu for more information.
Please print or type. For additional applicants, please duplicate this form. To significantly increase your chances of being accepted, send a facilitator.

Name:
Organization:
Title:
Address:
City: State/Province: Zip/Postal Code: Country:
Phone: Fax:

Attendee email (required):

TRACK SELECTION
NUMBER only the tracks you will accept in order of preference (1 being your first choice). A letter of confirmed registration and track assignment will be emailed on February 5, 2018. Students will not be allowed to switch tracks once the school has begun.

Manual Relay Testing
- Basic
- Distribution M/P
- Transmission
- Generation
- Electromechanical
- Theory

Automated Relay Testing
- Doble (Beginning)
- Doble (Advanced)
- Enoserv (Beginning)
- Enoserv (Advanced)
- Manta
- Megger AVTS
- Omicron (Beginning)
- Omicron (Advanced)

SCHOOL FEE
- $700 Please register me for the school (Checks payable to Washington State University, payment in U.S. funds drawn on a U.S. bank.)
- $10 I would like Continuing Education Units (CEUs).

PAYMENT METHOD
- Check enclosed
- Please call 509-335-3530/800-942-4978 to pay by Visa or MasterCard after submitting the form
- Bill my company, purchase order no. ____________________

Bill to email ____________________