Idiopathic Pulmonary Fibrosis (IPF) Joseph P. Lynch, III, MD, FCCP, FERS Holt and Jo Hickman Endowed Chair of **Advanced Lung Diseases and Lung Transplantation Professor of Clinical Medicine, Step IX** Division of Pulmonary & Critical Care Medicine, Clinical Immunology and Allergy The David Geffen School of Medicine at UCLA Disclosures (2018): speaker fees (Genentec) **Interstitial Lung Disease Clinical features:** Cough Dyspnea • Restrictive PFTs (low VC, TLC)

Idiopathic pulmonary fibrosis (IPF) Most common interstitial lung disease • Usual interstitial pneumonia (UIP) pattern on surgical lung biopsy **Nonspecific Interstitial Pneumonia** Clinical features overlap with IPF Much better response to therapy Need surgical lung Bx to diagnose Distinguishing IPF from **NSIP** and other ILDs important since prognosis and treatment differ

Idiopathic Pulmonary Fibrosis (IPF)

- Affects older adults (> 55 y)Progression inevitable
- Mortality > 70% at 5 years

Survival: UIP, NSIP, other ILDs Mayo Clinic Other ILD NSIP UIP UIP Description of the property of the pr

Interstitial Lung Diseases

> 150 causes

- Infectious (TB, fungi, PCP)
- Environmental (HP, metals; drugs)
- Connective Tissue Disease (CTD)
- Idiopathic (IPF, LIP, OP, sarcoidosis)

Interstitial Lung Disease

Laboratory evaluation

- Serologies for CTD
- Hypersensitivity pneumonia
- Infection (PPD, histo, cocci IgG, IgM)

-	
-	

Environmental History

- Exposures (work, home, hobbies)
- Toxins, irritants (drugs, chemicals)
- Cigarette smoking (LCH; DIP, RB)

Drugs may cause pulmonary toxicity

- Amiodarone
- Methotrexate
- Nitrofurantoin
- Sulfasalazine
- Chemotherapy
 - (Bleomycin; busulfan)

Pneumoconioses

- Beryllium
- Silica
- Hard metals (cobalt, tungsten carbide)
- Asbestos

•		

IPF: Differential Diagnosis

- Connective Tissue Disease
- Pneumoconiosis
- Chronic Hypersensitivity Pneumonia

Pulmonary Complications of CTD

- Interstitial Lung Disease may affect all CTDs
- Histological patterns same as idiopathic IPs
- Multiple patterns may be observed

Distinguishing IPF from other ILDs	
■ Thin section HRCT scans	
■ Surgical (VATS) Lung Biopsy	
Interstitial Lung Disease (ILD)	
Curried lung bioney acceptial to	
 Surgical lung biopsy essential to diagnose some ILDs (e.g., NSIP, HP) 	
Thin-section HRCT (1-2 mm) can	
diagnose some, but not all, cases IPF	
Interstitial Lung Disease (ILD)	
• Thin-section (1-2 mm) HRCT in some	
cases may be pathognomonic	
(e.g., IPF with honeycombing)	

Primarily affects elderly

Not seen in children

Risk Factors for IPF • Age (predominantly elderly) • More common in males • Genetic (familial) Chu, Semin Respir Crit Care Med 2016:37;321

Idiopathic Pulmonary Fibrosis

Familial IPF

- 0.5 to 10% of cases of IPF
- No clear genetic mutation
- Isolated mutations in kindreds

Familial IPF: Mutations

- Surfactant protein C and A
- Mucin genes (MUC5B)
- Telomerase (hTERT and hTR)

Chu, Semin Respir Crit Care Med 2016:37;321

Risk Factors for IPF

- Smoking
- Occupational (dusts, metals, sand)
- Gastroesophageal reflux (?)

Chu, Semin Respir Crit Care Med 2016:37;321

1	_

IPF: Histology

Usual Interstitial Pneumonia (UIP pattern)

Usual Interstitial Pneumonia (UIP)

- Heterogeneity
- Fibroblastic foci
- Honeycombing

 Distinguishing IPF from NSIP and other ILDs important since prognosis and treatment differ

Prognosis of IPF/UIP and Other ILDs

Surgical biopsies n=169 (U Mich, 1989-2000)

- Histological UIP most important feature determining mortality
- UIP/IPF RR mortality 28.5 compared to other ILDs (p < 0.001)

Flaherty, Eur Respir J 2012:19;276

 Surgical (VATS) lung biopsy is required to diagnose NSIP 	
Nonspecific interstitial pneumonia	
Histological criteria for NSIP:	
 Temporal homogeneity 	-
(lesions of same age)	
Lacks features of other IIPs	
(UIP, AIP, DIP/RBILD)	
Nonspecific interstitial pneumonia	
Cellular and fibrotic types	
Fibrotic worse prognosis	

Can CT distinguish IPF from NSIP?

UIP/IPF: HRCT Features

- Patchy, heterogeneous
- Lower lobes, subpleural
- Reticular (linear) lines
- Honeycomb cysts
- Ground glass minimal or absent

Honeycomb cysts (UIP) CT criteria (IPF vs NSIP) **Key discriminatory elements:** Honeycombing Ground glass opacities • "Typical" CT (i.e., with honeycombing) is specific for UIP/IPF and eliminates

need for surgical lung biopsy

• Honeycombing reflects:

- more advanced disease
- worse prognosis

- Honeycomb change in *any*Iobe (CT-fib ≥ 2) associated

with higher mortality

Flaherty, Eur Resp J 2002:19;276

NSIP and IPF Overlapping Features

- Distinguishing fibrotic NSIP from IPF is difficult
- Treatment differs (NSIP vs IPF)

Nonspecific Interstitial Pneumonia (NSIP)

Immunosuppressive therapy and/or prednisone may be effective, particularly in cellular variants of NSIP

Idiopathic Pulmonary Fibrosis (IPF)

Immunosuppressive therapy or prednisone not effective for IPF and may be harmful

Idiopathic Pulmonary Fibrosis (IPF)

- Median survival ~ 4 yrs
- Medical therapy (anti-fibrotic agents) marginally effective
 - . ? survival advantage

CT criteria (IPF vs NSIP)

Ground glass opacities strongly favor NSIP

HRCT scan: NSIP vs IPF IPF NSIP Honeycombing +++ +/Ground glass +/- +++

Discriminatory features • Age • HRCT (GGO vs HC)

IPF and NSIP

Discriminatory features

- Older age favors IPF
- Honeycombing (IPF)

Discriminating IPF from other ILDs

UIP (n=97); other ILD (n=38) (1995-2006)

- No honeycombing on HRCT
- No connective tissue disease
- All had surgical lung biopsy

Fell, AJRCCM 2010:181;832

Discriminating IPF from other ILDs

- Age and extent CT interstitial score most predictive of IPF
- Gender, desaturation, distance walked on 6MWT, PFTs did not discriminate IPF from other ILD

Fell, AJRCCM 2010:181;832

Age Powerful Predictor of IPF

- Age ≥ 70 yrs, > 95% had IPF
- Age ≥ 75 yrs, 100% had IPF

Fell, AJRCCM 2010:181;832

- "Atypical" CT patterns are non-specific; could represent IPF or NSIP or other ILDs
- Need surgical lung biopsy

Surgical Lung Biopsy

22,000 SLB in USA for ILD (2000-2011)

Mortality (in-hospital):

- **1.7%** (elective)
- 16.0% (non-elective)

Hutchinson, AJRCCM 2016 (May 15);1161

Surgical (VATS) Lung Biopsy Risk excessive if advanced age or unstable or high 02 requirements **Idiopathic Pulmonary Fibrosis** Clinical course Prognostic factors Best parameters to follow **Idiopathic Pulmonary Fibrosis (IPF)** Median survival ~ 4 yrs Medical therapy (anti-fibrotic agents) marginally effective . ? survival advantage

Idiopathic Pulmonary Fibrosis (IPF)

- immunosuppressive agentsor steroids are not beneficial
- Lung Transplant Best Option

Therapy for IPF

- Early referral for lung transplant
- May lose "window for transplant"

•IPF: course highly variable and unpredictable	
IPF: Pulmonary Function Tests	
Serial PFTs 3-4 months	
Spirometry, DLCO	
6-minute walk tests	
= Course may be fulminant even	
Course may be fulminant even after initial indolent progression	
■ PFTs may be stable for prolonged	
periods	
Acute exacerbations may be fatal	

Increased Mortality if:

- Older age
- Severe impairment PFTs
- Hypoxemia
- Honeycombing on CT
- Pulmonary hypertension

PFTs in IPF: Prognostic Significance

 Not surprisingly, severe impairment or decline in FVC, DL_{CO}, oxygenation, or 6MWD predicts worse mortality

Changes in FVC at 6 months

IPF (n=80); NSIP (n=29) (U Mich)

> 10% decline FVC at 6 months independent predictor mortality (HR 2.47)

Flaherty, *AJRCCM* 2003:168;543

Serial PFTs Predict Prognosis	
IPF (n=81) (Denver) > 10% decline FVC at 6 or 12 mo assoc with higher mortality Collard, AJRCCM 2003:168;538	
Serial PFTs Predict Prognosis	
IPF (n=131); NSIP (n=48) (Korea)	
> 10% decline FVC at 6 mo best predictor of mortality	
 Declining FVC warrants consideration for lung transplant However, fatalities can occur even with prolonged stability 	

Complications of IPF

- Acute exacerbations of IPF
- Pulmonary Hypertension
- Lung cancer (5-15%)

Acute Exacerbations of IPF

- Incidence 19-35% < 2 years
- Resembles ARDS
- Diffuse lung damage (DAD)
- Ground glass opacities (CT)

Risk Factors for AE-IPF

- More severe disease
- Prednisone or IS therapy
- Winter months
- Pulmonary hypertension
- Thoracic surgery (VATS)

? Cause for AE-IPF

? Infection (viral)

AE- IPF: Treatment

- Optimal treatment not clear
- Randomized trials lacking
- ? value of steroid therapy

Song, Eur Respir J 2011:39;357

Severe AE-IPF

- Prognosis if require MV poor (> 90% mortality)
- Unless on lung transplant list, consider DNI/DNR

Pulmonary Hypertension

- PAH in 28-84% of patients with advanced IPF
- PAH markedly worsens survival

Pulmonary hypertension in IPF 2-D echo to assess sPAP • ? If treatment of PAH affects outcome Anecdotal responses to PAHspecific agents but RCT lacking PAH due to lung disease PAH-specific therapy may have role in patients with severe PAH as a bridge to lung transplantation Shino, Semin Respir Crit Care Med (Oct 2013) **Idiopathic Pulmonary Fibrosis** Medical Treatment Lung Transplant

Idiopathic Pulmonary Fibrosis Course and "pace" of disease highly variable Lung transplant 1st line but only for selected patients • Who should receive novel agents? **Treatment of IPF** High dose prednisone was standard of care for > 40 years despite no evidence for benefit

Idiopathic Pulmonary Fibrosis

 Despite lack of randomized, placebo-controlled trials, prednisone + azathioprine used for more than 3 decades

Azathioprine for IPF

PANTHER Study (IPFnet)
 terminated early (Oct 2011) due to
 higher mortality and morbidity in
 AZA + prednisone + NAC arm

N Engl J Med (May 24, 2012):366:1968

Therapy of IPF

- Other immunosuppressive agents unlikely to be efficacious
 - e.g., mycophenolate mofetil

IPF: which target?

- Multiple "targets" (cells, cytokines, inflammation, fibrosis)
- Mechanisms of injury and fibrosis overlap and redundant

FDA Approved Oct 15, 2014

- Pirfenidone (Esbriet)
- Nintedanib (Ofev)

Treatment of IPF

 In clinical trials, pirfenidone and nintedanib slow rate of decline but differences small (△FVC 2-4%) at 1 yr

Pirfenidone for IPF

CAPACITY I (006) (n=344)

• pirfenidone (oral) vs placebo

CAPACITY II (004) (n=435)

Noble, Lancet 2011:377:1760

Pirfenidone for IPF

- No difference survival, DL_{CO},
 6MWT, ∆02 sat
- Less decline FVC at 72 weeks
 [Capacity II (004); not Capacity I (006)]

Pirfenidone for IPF Pirfenidone 2403 mg/day (n=278) Placebo (n=277) King, N Engl J Med 2014:370;2083

Pirfenidone for IPF Slows rate of progression Impact on mortality uncertain

Saucon
"No, no, no! Now, try it again! Remember, this is our one and only ticket out of here!"

Nintedanib ((Ofev)
--------------------------------	--------

• Tyrosine kinase inhibitor

Nintedanib for IPF

Nintedanib 150 mg bid or placebo

52 weeks; change FVC

IMPULSIS-1 (n=511)

IMPULSIS-2 (n=544)

Richeldi, *N Engl J Med* 2014:370:2072

Lung transplant for IPF

 Survival post-LT worse in IPF compared to other diagnoses

(may reflect age, comorbidities)

Single or Bilateral Transplant? • Bilateral lung transplant for IPF, but not COPD, confers modest improvement in survival **Single or Bilateral Transplant?** USA, LT (adults) May 2005-Dec 31, 2012: • IPF (n=4,134) (SLT in 49%) • COPD (n=3,174) (SLT in 41%) Schaffer, JAMA 2015:313;936 **Single or Bilateral Transplant?** After controlling for confounders, **BLT** better survival than SLT in IPF but not in COPD Schaffer, JAMA 2015:313;936

Lung Transplant for Elderly ISHLT Guidelines (2006) • Age > 65 "relative contraindication" to LT Orens, JHLT 2006:25;745

Lung Transplant for Elderly UNOS, 1999-2006

8,363 adult LT recipients
Mortality (30 d, 90 d, 1-yr)

Weiss J Am Coll Surg 2009:208;400

