Idiopathic Pulmonary Fibrosis (IPF)

Joseph P. Lynch, III, MD, FCCP, FERS
Holt and Jo Hickman Endowed Chair of Advanced Lung Diseases and Lung Transplantation
Professor of Clinical Medicine, Step IX
Division of Pulmonary & Critical Care Medicine, Clinical Immunology and Allergy
The David Geffen School of Medicine at UCLA

Disclosures (2018): speaker fees (Genentec)

Interstitial Lung Disease

Clinical features:
- Cough
- Dyspnea
- **Restrictive PFTs** *(low VC, TLC)*
Idiopathic pulmonary fibrosis (IPF)

- Most common interstitial lung disease
- Usual interstitial pneumonia (UIP) pattern on surgical lung biopsy

Nonspecific Interstitial Pneumonia

- Clinical features overlap with IPF
- Much better response to therapy
- Need surgical lung Bx to diagnose

Distinguishing IPF from NSIP and other ILDs important since prognosis and treatment differ
Idiopathic Pulmonary Fibrosis (IPF)

- Affects older adults (> 55 y)
- Progression inevitable
- Mortality > 70% at 5 years

Survival: UIP, NSIP, other ILDs

- Mayo Clinic
- Bjoraker, AJRCCM, 1998:157/199
Survival in UIP, NSIP and RBILD

Survival in UIP and NSIP

Nicholson, AJRCM 2000; 162: 2213

"Wait a minute! Isn’t anyone here a real sheep?"
Interstitial Lung Diseases

> 150 causes

- Infectious (TB, fungi, PCP)
- Environmental (HP, metals; drugs)
- Connective Tissue Disease (CTD)
- Idiopathic (IPF, LIP, OP, sarcoidosis)

Interstitial Lung Disease

Laboratory evaluation

- Serologies for CTD
- Hypersensitivity pneumonia
- Infection (PPD, histo, cocci IgG, IgM)
Environmental History

- Exposures (work, home, hobbies)
- Toxins, irritants (drugs, chemicals)
- Cigarette smoking (LCH; DIP, RB)

Drugs may cause pulmonary toxicity

- Amiodarone
- Methotrexate
- Nitrofurantoin
- Sulfasalazine
- Chemotherapy
 - (Bleomycin; busulfan)

Pneumoconioses

- Beryllium
- Silica
- Hard metals (cobalt, tungsten carbide)
- Asbestos
IPF: Differential Diagnosis

- Connective Tissue Disease
- Pneumoconiosis
- Chronic Hypersensitivity Pneumonia

Pulmonary Complications of CTD

- Interstitial Lung Disease may affect all CTDs
- Histological patterns same as idiopathic IPs
- Multiple patterns may be observed
Distinguishing IPF from other ILDs

- Thin section HRCT scans
- Surgical (VATS) Lung Biopsy

Interstitial Lung Disease (ILD)

- Surgical lung biopsy *essential* to diagnose some ILDs (e.g., NSIP, HP)
- Thin-section HRCT (1-2 mm) can diagnose *some, but not all, cases* IPF

Interstitial Lung Disease (ILD)

- Thin-section (1-2 mm) HRCT in some cases may be pathognomonic
 - (e.g., IPF with honeycombing)
Honeycomb cysts (UIP)

Epidemiology of Idiopathic Pulmonary Fibrosis (IPF)

- Primarily affects elderly
- Not seen in children
Prevalence IPF according to age

Coultas, AJRCCM 1994:150;967

New Mexico

Prevalence per 100,000

Age (years)

35-44 75+

3 177

18-34 75+

4 227

USA (1999-2000)

Prevalence per 100,000

Age (years)

Raghu, AJRCCM 2006:174;810

USA (2004-2010) age 18-64 (> 40 million adults)

Prevalence per 100,000

Age (years)

Raghu, Eur Respir J 2010:46;179
Deaths due to IPF according to age

IPF: incidence and Prevalence > 65 years

Risk Factors for IPF

- Age (predominantly elderly)
- More common in males
- Genetic (familial)
Idiopathic Pulmonary Fibrosis

Familial IPF

- 0.5 to 10% of cases of IPF
- No clear genetic mutation
- Isolated mutations in kindreds

Familial IPF: Mutations

- Surfactant protein C and A
- Mucin genes (MUC5B)
- Telomerase (hTERT and hTR)

Chu, *Semin Respir Crit Care Med* 2016;37;321

Risk Factors for IPF

- Smoking
- Occupational (dusts, metals, sand)
- Gastroesophageal reflux (?)

Chu, *Semin Respir Crit Care Med* 2016;37;321
IPF: Histology

- Usual Interstitial Pneumonia (UIP pattern)

Usual Interstitial Pneumonia (UIP)

- Heterogeneity
- Fibroblastic foci
- Honeycombing
Pathology of UIP/IPF

Transition to uninvolved lung present in the biopsy

Fibroblastic focus-high power
• Distinguishing IPF from NSIP and other ILDs important since prognosis and treatment differ.

Chronic Interstitial Lung Disease

- Histological UIP most important feature determining mortality
- UIP/IPF RR mortality 28.5 compared to other ILDs (p < 0.001)

Prognosis of IPF/UIP and Other ILDs

Flaherty, Eur Respir J 2012;19:276
Surgical (VATS) lung biopsy is *required* to diagnose NSIP

Nonspecific interstitial pneumonia

Histological criteria for NSIP:

- Temporal homogeneity
 (lesions of same age)
- Lacks features of other IIPs
 (UIP, AIP, DIP/RBILD)

Nonspecific interstitial pneumonia

- Cellular and fibrotic types
- Fibrotic worse prognosis
Honeycombing
Can CT distinguish IPF from NSIP?

UIP/IPF: HRCT Features
- Patchy, heterogeneous
- Lower lobes, subpleural
- Reticular (linear) lines
- Honeycomb cysts
- Ground glass minimal or absent
Honeycomb cysts (UIP)

CT criteria (IPF vs NSIP)

Key discriminatory elements:
- Honeycombing
- Ground glass opacities

“Typical” CT (i.e., with honeycombing) is specific for UIP/IPF and eliminates need for surgical lung biopsy
HRCT appearance vs survival

- Honeycombing reflects:
 - more advanced disease
 - worse prognosis

168 cases IIP (U Mich)

- Honeycomb change in *any lobe* (CT-fib > 2) associated with higher mortality

Flaherty, Eur Resp J 2002:19:276
CT fib ≥ 2 worse survival

NSIP and IPF Overlapping Features

- Distinguishing fibrotic NSIP from IPF is difficult
- Treatment differs (NSIP vs IPF)

Nonspecific Interstitial Pneumonia (NSIP)

- Immunosuppressive therapy and/or prednisone may be effective, particularly in cellular variants of NSIP
Idiopathic Pulmonary Fibrosis (IPF)

- Immunosuppressive therapy or prednisone not effective for IPF and may be harmful

- Median survival ~ 4 yrs
- Medical therapy (anti-fibrotic agents) marginally effective
- ? survival advantage
CT criteria (IPF vs NSIP)

- Ground glass opacities strongly favor NSIP

Nonspecific interstitial pneumonia
HRCT scan: NSIP vs IPF

<table>
<thead>
<tr>
<th>Feature</th>
<th>IPF</th>
<th>NSIP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Honeycombing</td>
<td>+++</td>
<td>+/-</td>
</tr>
<tr>
<td>Ground glass</td>
<td>+/-</td>
<td>+++</td>
</tr>
</tbody>
</table>

IPF and NSIP

Discriminatory features

- Age
- HRCT (GGO vs HC)
IPF and NSIP

Discriminatory features
- Older age favors IPF
- Honeycombing (IPF)

Discriminating IPF from other ILDs

UIP (n=97); other ILD (n=38) (1995-2006)
- No honeycombing on HRCT
- No connective tissue disease
- All had surgical lung biopsy

Fell, AJRCCM 2010:181;832

Discriminating IPF from other ILDs

- Age and extent CT interstitial score most predictive of IPF
- Gender, desaturation, distance walked on 6MWT, PFTs did *not* discriminate IPF from other ILD

Fell, AJRCCM 2010:181;832
Age Powerful Predictor of IPF

- Age ≥ 70 yrs, > 95% had IPF
- Age ≥ 75 yrs, 100% had IPF

Fell, AJRCCM 2010;181;832

“Atypical” CT patterns are non-specific; could represent IPF or NSIP or other ILDs

- Need surgical lung biopsy

Surgical Lung Biopsy

22,000 SLB in USA for ILD (2000-2011)

Mortality (in-hospital):
- 1.7% (elective)
- 16.0% (non-elective)

Hutchinson, AJRCCM 2016 (May 15):1161
Surgical (VATS) Lung Biopsy

- Risk excessive if advanced age or unstable or high O2 requirements

Idiopathic Pulmonary Fibrosis

- Clinical course
- Prognostic factors
- Best parameters to follow

Idiopathic Pulmonary Fibrosis (IPF)

- Median survival ~ 4 yrs
- Medical therapy (anti-fibrotic agents) marginally effective
- ? survival advantage
Idiopathic Pulmonary Fibrosis (IPF)

- immunosuppressive agents or steroids are not beneficial
- Lung Transplant Best Option

Therapy for IPF

- Early referral for lung transplant
- May lose “window for transplant”
• **IPF: course highly variable and unpredictable**

IPF: Pulmonary Function Tests

Serial PFTs 3-4 months
- Spirometry, DLCO
- 6-minute walk tests

- Course may be fulminant even after initial indolent progression
- PFTs may be stable for prolonged periods
- Acute exacerbations may be fatal
Increased Mortality if:

- Older age
- Severe impairment PFTs
- Hypoxemia
- Honeycombing on CT
- Pulmonary hypertension

PFTs in IPF: Prognostic Significance

- Not surprisingly, severe impairment or decline in FVC, DL$_{CO}$, oxygenation, or 6MWD predicts worse mortality

Changes in FVC at 6 months

IPF (n=80); NSIP (n=29) (U Mich)

> 10% decline FVC at 6 months independent predictor mortality (HR 2.47)
<table>
<thead>
<tr>
<th>Serial PFTs Predict Prognosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPF (n=81) (Denver)</td>
</tr>
<tr>
<td>> 10% decline FVC at 6 or 12 mo assoc with higher mortality</td>
</tr>
<tr>
<td>Collard, AJRCCM 2003:168;538</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Serial PFTs Predict Prognosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPF (n=131); NSIP (n=48) (Korea)</td>
</tr>
<tr>
<td>> 10% decline FVC at 6 mo best predictor of mortality</td>
</tr>
<tr>
<td>Jegal, AJRCCM 2005:171;169</td>
</tr>
</tbody>
</table>

- Declining FVC warrants consideration for lung transplant
- However, fatalities can occur even with prolonged stability
Complications of IPF

- Acute exacerbations of IPF
- Pulmonary Hypertension
- Lung cancer (5-15%)

Acute Exacerbations of IPF

- Incidence 19-35% < 2 years
- Resembles ARDS
- Diffuse lung damage (DAD)
- Ground glass opacities (CT)
Risk Factors for AE-IPF

- More severe disease
- Prednisone or IS therapy
- Winter months
- Pulmonary hypertension
- Thoracic surgery (VATS)
Cause for AE-IPF

- Infection (viral)

AE-IPF: Treatment

- Optimal treatment not clear
- Randomized trials lacking
- Value of steroid therapy

Song, Eur Respir J 2011;39;357

Prognosis of AE-IPF

- AE-IPF, Korea (n=163)
- 1-year: 56.2%
- 5-year: 18.5%

Song, ERJ 2011;39;357
Severe AE-IPF

- Prognosis if require MV poor (> 90% mortality)
- Unless on lung transplant list, consider DNI/DNR

Pulmonary Hypertension

- PAH in 28-84% of patients with advanced IPF
- PAH markedly worsens survival
Pulmonary hypertension in IPF

- 2-D echo to assess sPAP
- ? If treatment of PAH affects outcome
- Anecdotal responses to PAH-specific agents but RCT lacking

PAH due to lung disease

- PAH-specific therapy may have role in patients with severe PAH as a bridge to lung transplantation

Idiopathic Pulmonary Fibrosis

- Medical Treatment
- Lung Transplant
Idiopathic Pulmonary Fibrosis

- Course and “pace” of disease highly variable
- Lung transplant 1st line but only for selected patients
- Who should receive novel agents?

Treatment of IPF

- High dose prednisone was standard of care for > 40 years despite no evidence for benefit

Idiopathic Pulmonary Fibrosis

- Despite lack of randomized, placebo-controlled trials, prednisone + azathioprine used for more than 3 decades
Azathioprine for IPF

- **PANTHER Study (IPFnet)** terminated early (Oct 2011) due to higher mortality and morbidity in AZA + prednisone + NAC arm

PANTHER STUDY: IPF

- Bars showing mortality, hospitalizations, and AE for AZ + pred + NAC (n=77) vs. placebo (n=78)

"Oh, for heaven’s sake, Miss Carlisle! ... They’re only cartoon animals!"
Therapy of IPF

- Other immunosuppressive agents unlikely to be efficacious
 - e.g., mycophenolate mofetil

IPF: which target?

- Multiple “targets” (cells, cytokines, inflammation, fibrosis)
- Mechanisms of injury and fibrosis overlap and redundant

FDA Approved Oct 15, 2014

- Pirfenidone (Esbriet)
- Nintedanib (Ofev)
Treatment of IPF

- In clinical trials, pirfenidone and nintedanib slow rate of decline but differences small ($\Delta $FVC 2-4%) at 1 yr

Pirfenidone for IPF

CAPACITY I (006) (n=344)
- pirfenidone (oral) vs placebo

CAPACITY II (004) (n=435)

Noble, Lancet 2011:377:1760

- No difference survival, DL$_{CO}$, 6MWT, $\Delta $O2 sat
- Less decline FVC at 72 weeks
 [Capacity II (004); not Capacity I (006)]
CAPACITY (004 + 006): ΔFVC 72 wks

Pirfenidone for IPF

ASCEND Trial (52 wks):
- Primary end-point:
 - disease progression
 - (Δ FVC > 10% or death)

Pirfenidone for IPF

- Pirfenidone 2403 mg/day (n=278)
- Placebo (n=277)
Pirfenidone (ASCEND) Study

% decline FVC > 10% or death by 52 weeks

- Pirfenidone (n=278)
- Placebo (n=277)

King, N Engl J Med 2014:370;2083

$p < 0.001$

Pirfenidone Trials (IPF)

% of patients with ≥10% decline in FVC

- Pirfen 004 (72 wk)
- Pirfen 006 (72 wk)
- NEJM 2014 (1 yr)

Pirfenidone for IPF

- Slows rate of progression
- Impact on mortality uncertain
Nintedanib (Ofev)

- Tyrosine kinase inhibitor

Nintedanib for IPF

Nintedanib 150 mg bid or placebo

52 weeks; change FVC

IMPULSIS-1 (n=511)

IMPULSIS-2 (n=544)

Nintedanib for IPF

Primary endpoint:

- Δ FVC at 52 weeks

Nintedanib: ΔFVC 52 wks

Nintedanib: ΔFVC 52 wks

Nintedanib: Mortality 52 wks

Richeldi, N Engl J Med 2014;370;2072

p=0.14

Impulse-1 + 2

5.5

Richeldi, N Engl J Med 2014;370;2072

"Whoa! Watch where that thing lands—we'll probably need it."
Lung transplant for IPF

- Survival post-LT worse in IPF compared to other diagnoses

(may reflect age, comorbidities)

Survival by Diagnosis (Jan 1990-June 2011)

Yusen, J Heart Lung Transplant Oct 2013 :32(10)
Single or Bilateral Transplant?

- Bilateral lung transplant for IPF, but not COPD, confers modest improvement in survival

Single or Bilateral Transplant?

USA, LT (adults) May 2005-Dec 31, 2012:

- IPF (n=4,134) (SLT in 49%)
- COPD (n=3,174) (SLT in 41%)

Schaffer, JAMA 2015:313;936

Single or Bilateral Transplant?

- After controlling for confounders, BLT better survival than SLT in IPF but not in COPD

Schaffer, JAMA 2015:313;936
Single or Bilateral LT?

![Bar chart showing survival rates for single (SLT) and bilateral (BLT) lung transplants.](Schaffer_JAMA_2015;313:936)

Lung Transplant for Elderly

ISHLT Guidelines (2006)

- Age > 65 “relative contraindication” to LT

![Image showing survival by LT recipient age (Adults).](Orens_JHLT_2006:25:745)

Survival by LT Recipient Age (Adults)

Median survival (years): 18-34=6.5; 35-49=6.7; 50-59=5.3; 60-65=4.3; >65=3.6

All pair-wise comparisons were significant at p < 0.05 except 18-34 vs. 35-49
Lung Transplant for Elderly

UNOS, 1999-2006

8,363 adult LT recipients

Mortality (30 d, 90 d, 1-yr)

Lung Transplantation

Age as predictor of mortality
