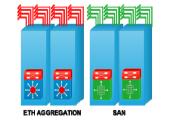
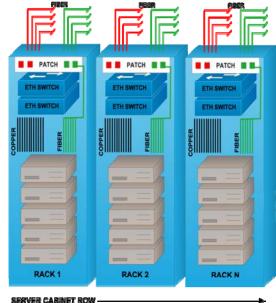

Data Center Challenges

- Cabling Complexity
- Policy and Regulatory Demands
- Reduce Carbon Footprint
 Data Contor
- Data Center Limitations
- Scale Resources for Server Virtualization
- Expand Network
 Bandwidth
- Density Challenges
- Floor Space
- Power per Rack
- Simple Management

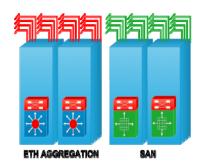
10GbE Networking Trends

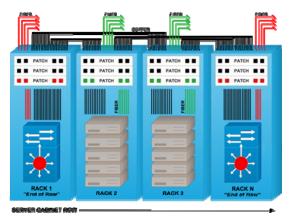



10 THINGS TO CONSIDER WITH 10GBE DEPLOYMENT

#1) Switch ArchitectureTop of Rack

- Modular unit design managed by rack
- Servers connect to 1-2 Ethernet switches inside rack
- Rack connected to data center aggregation layer with SR optic or twisted pair
- Blades effectively incorporate TOR design with integrated switch

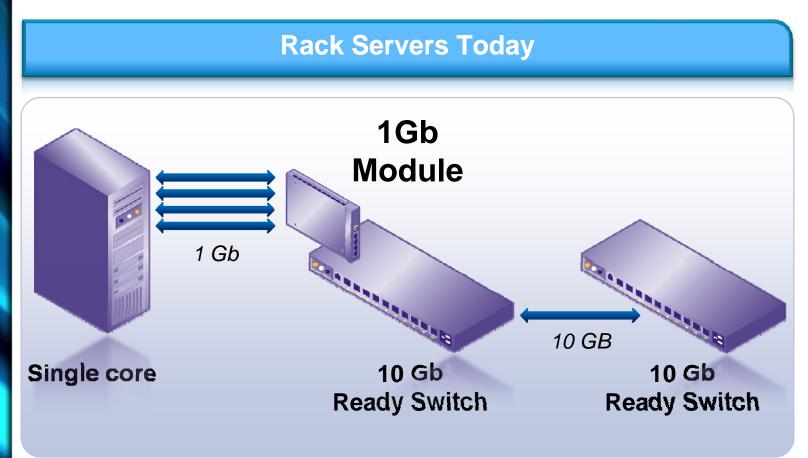




Switch Architecture End of Row

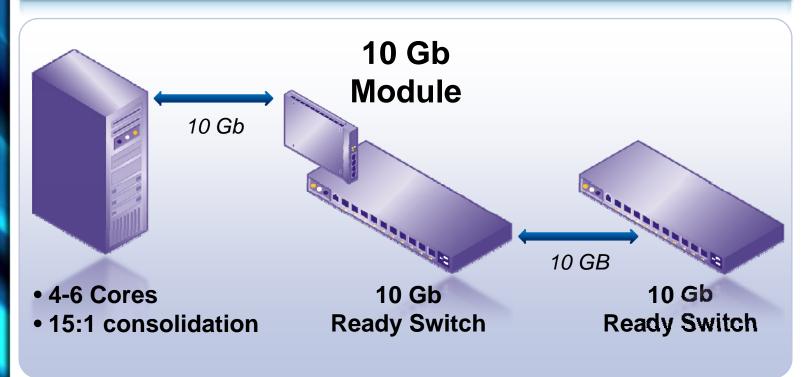
- Server cabinets lined up side-by-side
- Rack or cabinet at end (or middle) of row with network switches
- Fewer switches in the topology
- Managed by row fewer switches to manage

#2) Server Architecture



- Generally more I/O & memory expansion
- More expensive 10G physical interconnect
- Later 10G LOM due to **10GBASE-T**

- Typically limited I/O expansion (1-2 slots)
- Much cheaper 10G ulletphysical interconnect backplane Ethernet & integrated switch leading 10G transition
- Earlier 10G LOM


Server Architecture

Server Refresh

Adding servers with 10GB connection to switch

PAIN POINTS:

for Ethernet

bandwidth

TODAY:

Limited real estate

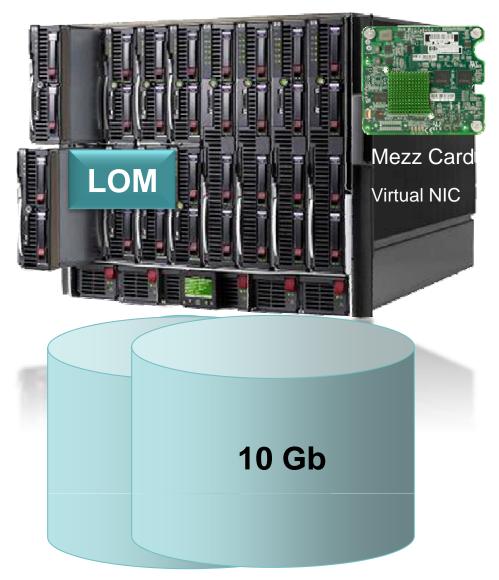
1 Gb LOM ports

1 Gb Mezz card

10 Gb LOM ports

10 Gb Mezz ports

4 VNICs per port


ONECONNECT:

VIRTUAL NIC:

April 12-15, 2010 Rosen Shingle Creek Resort Orlando, Florida

Blade Servers

#3) Cables

Today's Data Center

- Typically Twisted Pair for Gigabit Ethernet
 - Some Cat 6, more likely Cat 5
- Optical cable for Fibre Channel
 - Mix of older OM1 and OM2 (orange) and newer OM3 (green)
 - Fibre Channel may not be wired to every rack

10GbE Cable Options

Mid 1980's	<i>Mid</i> 1990's		Early 2000's		5	
10Mb	100Mb		Gb	10Gb		
UTP Cat 3	UTP Cat 5	SFP		SFP+ Cu, F X2, Cat 6/		
	Technology	Cable	Distance	Power (each side)	Transceiver Latency (link)	
	SFP+ Direct Attach	Copper Twinax	10m	~0.1W	~0.1µs	
	10GBase SR (short range)	Optic Multi-Mode	62.5μm - 82m 50μm - 300m	1W	~0	
	10GBase LR (long range)	Optic Single-Mode	10 km	1W	Var	
	10GBASE-T	Copper Twisted Pair	Cat6 - 55m Cat 6a 100m Cat7 -30m	~8W ~8W 4W	2.5μs 2.5, 1.5 μs	
<u> </u>						

New 10GBASE-T Options

Top of Rack

- SFP+ is lowest cost option today
 - Doesn't support existing gigabit Ethernet LOM ports
- 10GBASE-T support emerging
 - Lower power at 10-30m reach (2.5w)
 - Energy Efficient
 Ethernet reduces to
 ~1w on idle

End of Row

- Optical is only option today
- 10GBASE-T support emerging
 - Lower power at 10-30m reach (2.5w this year)
 - Can do 100m reach at 3.5w
 - Energy Efficient
 Ethernet reduces to
 ~1w on idle

April 12-15, 2010 Rosen Shingle Creek Resort Orlando, Florida

#4) Data Center Bridging

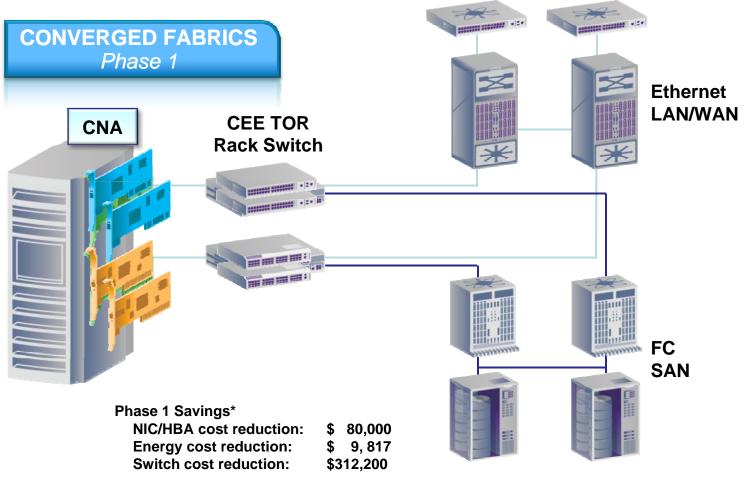
Ethernet is a "best-effort" network

- Packets may be dropped
- Packets may be delivered out of order
 - Transmission Control Protocol (TCP) is used to reassemble packets in correct order

Data Center Bridging (aka "lossless Ethernet")

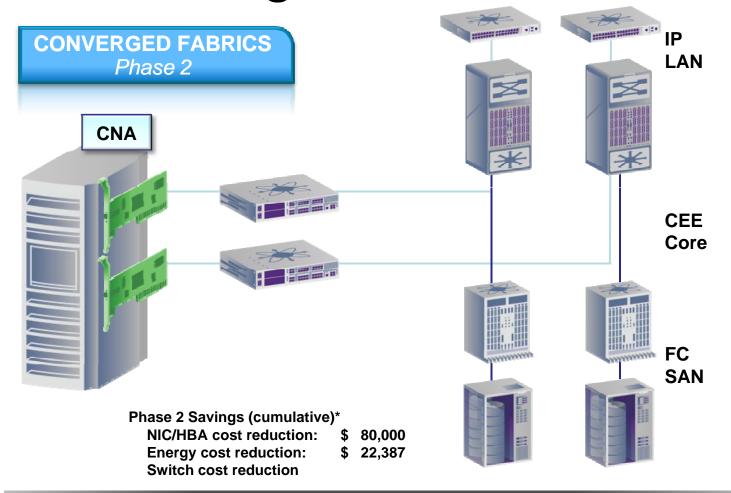
- The "bridge to somewhere" pause-based link between nodes
- Provides low latency required for FCoE support
- Expected to benefit iSCSI, enable iSCSI convergence

IEEE Data Center Bridging Standards


Feature	Benefit	Standards Activity		
Priority-based Flow Control (PFC)	Enables lossless Ethernet – manages I/O between initiator and target on a multi- protocol Ethernet link	IEEE 802.1Qbb		
Quality of Service (QoS)	Supports 8 priorities for network traffic	IEEE 802.1p		
Enhanced Transmission Selection (ETS)	Allocate bandwidth to IP, iSCSI and FCoE traffic – managed with OneCommand 5.0	IEEE 802.1Qaz		
Data Center Bridging Capability Exchange (DCBX)	Extends DCB network by exchanging Ethernet parameters between DCB switches	IEEE 802.1ab		

April 12-15, 2010 **Rosen Shingle Creek Resort**

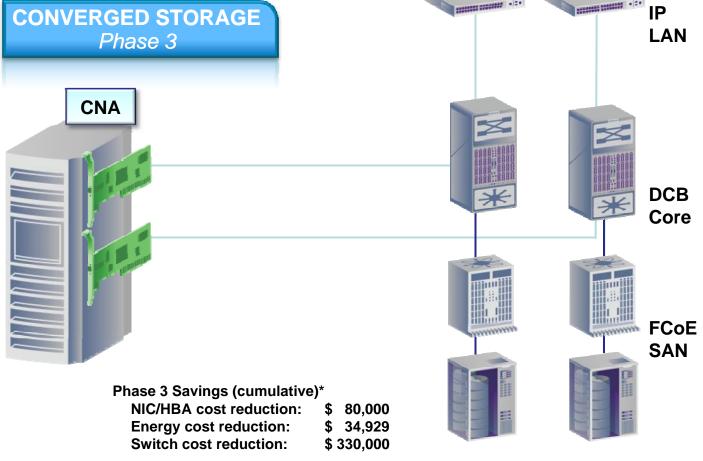
#5) Network Convergence



The 1st Phase of Network Consolidation will Occur in the Server Rack

*100 servers w/ 2 NICs and 2 HBAs. 5 RAID storage systems

Convergence in Fabric



The 2nd Phase will Consolidate TOR and IP Switching

*100 servers w/ 2 NICs and 2 HBAs, 5 RAID storage systems

The 3rd Phase will Consolidate FC Switching and Storage

*100 servers w/ 2 NICs and 2 HBAs, 5 RAID storage systems

Savings with Convergence

Before Convergence 140 Cables

м	.om	LOM	LOM	LOM	LOM	Loi		DM	.ом	L
	-om	LOM	LOM	LOM	LOM	Loi	n Lo	DM L	.om	
IF		P IF	P	IP	IP	IP	IP	IP	IP	1
IF	┿		-	IP	P	IP	IP	IP	IP	1
F		P IF	IP	IP	P	IP	IP	IP	IP	
F		P IF	IP	IP	P	P	₽	₽	IP	
IF		P IF	IP	IP	IP	IP	IP	IP	IP	1
F		P IF	IP	IP	IP	P	P	P	IP	
		p IF	IP	IP	₽	P	₽	₽	₽	
IF		P IF	P IP	IP	IP	IP	IP	IP	IP	
F	•	C F	FC	FC	FC	FC	FC	FC	FC	
F	•	C F(FC	FC	FC	FC	FC	FC	FC	
F	F	C F(FC	FC	FC	FC	FC	FC	FC	
F	: F	C FO	FC	FC	FC	FC	FC	FC	FC	

After Convergence 60 Cables

Savings Up To:

- 28% on switches, adapters
- 80% on cabling
- 42% on power and cooling

(Based on 2 LOM, 8 IP and 4 FC Ports on 10 Servers)

To Converge or Not To Converge?

Volume x86 systems

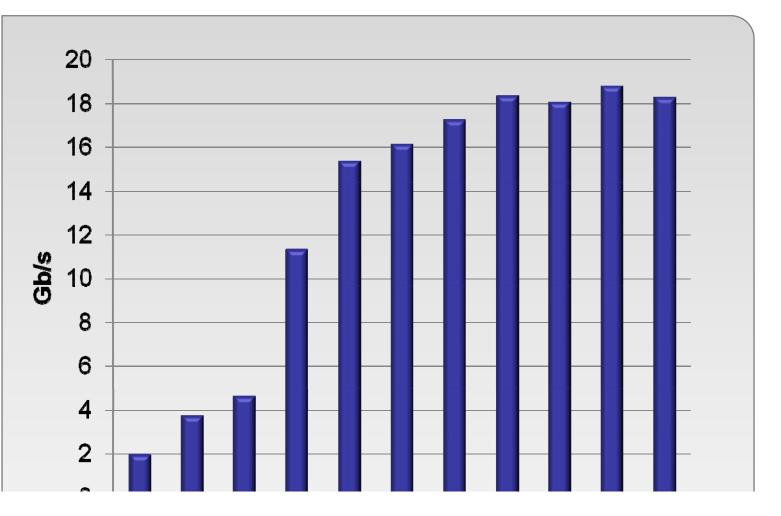

- Best business case for convergence
- Systems actually benefit by reducing adapters, switch ports and cabling

High End Unix Systems

- Limited convergence benefit
- Typically large number of SAN and LAN ports
- System may go from 24 Ethernet and 24 Fibre Channel ports to 48 Converged Ethernet ports
- Benefits in later stages of data center convergence when Fibre Channel SAN fully running over Ethernet physical layer (FCoE)

Virtual NICs

- Available today for blade servers
- Each physical port can be divided into multiple virtual ports
 - Look like physical ports to the OS or hypervisor
 - Looks like physical ports to the network
- Bandwidth allocated to virtual ports
- Virtual ports networked with virtual machines



#7) Select 10Gb Adapter

- 10Gb LOM becoming standard on high-end servers
- Second adapter for high availability
- Should support FCoE and iSCSI offload for network convergence
- Compare performance for all protocols

Performance – TCP/IP

