Segregation and integration of cortical laminar information streams and their role in attention

Andre Moraes Bastos

July 30th, 2014

ICON, Brisbane

Introduction

- Top-down and bottom-up processing
 - Cognitive distinction ("endogenous" vs. "exogenous")
 - Anatomical distinction ("feedforward" vs. "feedback")
- These asymmetries define a cortical hierarchy
- Points to a key computational challenge of cortical networks: functional segregation and functional integration
- What is the putative role of distinct cortical laminae in these processes?

Cortical lamina in monkey area V1

Anatomy of hierarchy

Feedforward and feedback counterstreams define a cortical hierarchy

Gamma synchronization is superficial, beta synchronization is deep

Buffalo et al., (2011)

Hypothesis for strong anatomical asymmetries

Prediction: strong functional asymmetry between gamma and beta

Hypothesis for weak anatomical asymmetries

Prediction: weak functional asymmetry between gamma and beta

Coverage of large-scale, high-density monkey ECoG recordings

Increasing hierarchical level
AM HO DP
AND VA
AND V

Visual attention task

Measuring directed influences with Granger causality

Spectral GC

fraction of total power at a frequency f of A is G-caused by B

Quantifying functional asymmetries

$$DAI(frequency) = \frac{\text{outflow - inflow}}{\text{outflow + inflow}}$$

Bastos, Vezoli, Bosman, et al., BioArchive

Anatomy of hierarchy

Correlation between anatomical and functional *graded* asymmetries

Correlation between anatomical and functional asymmetries

$$DAI(frequency) = \frac{GC \ outflow - GC \ inflow}{GC \ outflow + GC \ inflow}$$

 $SLN = \frac{\text{# neurons labeled supragranular}}{\text{#neurons labeled infra+supragranular}}$

Graded-ness of anatomy and function are correlated

The functional visual cortical hierarchy

Bastos, Vezoli, Bosman, et al., BioArchive

Comparing hierarchical models

Functional Hierarchy Model

Anatomical Hierarchy Model (Kennedy)

Bastos, Vezoli, Bosman, et al., BioArchive

Attentional modulation of inter-areal GC influences

*** significant (p<0.05)
in both monkeys
* significant (p<0.05)
in one monkey only

Is the functional hierarchy dynamic?

Bastos, Vezoli, Bosman, et al., BioArchive

Is the functional hierarchy dynamic?

Is the functional hierarchy dynamic?

Bastos, Vezoli, Bosman, et al., BioArchive

Canonical microcircuits for predictive coding?

Spectral asymmetries between superficial and deep cells

Conclusions

- Feedforward and feedback anatomical connections are segregated in different layers
- Functionally, feedforward and feedback communication are segregated in different frequencies
- These communication "rules" define a functional hierarchy
- Beta and gamma influences are likely related to the underlying laminar anatomical connectivity and oscillatory profile of different areas
- Inter-areal synchronization at beta and gamma frequencies is enhanced with selective visual attention
- Changes in inter-areal GC influences over task periods reveal a dynamic functional hierarchy
- These patterns may underlie a basic circuit motif of canonical microcircuits

Acknowledgements

Julien Vezoli
Conrado Bosman
Jan-Mathijs Schoffelen
Robert Oostenveld
Henry Kennedy
Pascal Fries

Future questions

- If top-down and bottom-up processing are segregated in layers and frequencies, then what mechanism(s) mediate their functional integration?
- Cross-frequency interactions: how does topdown beta lead to bottom-up gamma modulation?
- Cortical hierarchical organization in the human brain?

The hierarchy has some intrinsic variability

Original Communication-through-coherence hypothesis

Theta and gamma are feedforward, beta is feedback

Bastos, Vezoli, Bosman, et al., BioArchive

Inter-areal synchronization exists *predominantly* at non-zero phase

Grothe et al., 2012 Gregoriou et al., 2009

CTC through frequency and anatomical segregation

CTC through frequency and anatomical segregation

- local mixing within SG/IG layers -

Feedforward communication

Feedback communication

SG layers 1-3 / gamma

IG layers 5-6 / beta

Bastos, Vezoli, Fries, in preparation

Markov et al., J Comp Neurol, 2013