Recovering Resources, Transforming Water

> Kuldip Kumar , Ph.D Kuldip.Kumar@mwrd.org Ph. 708.588.3579

Metropolitan Water Reclamation District of Greater Chicago

Resource Recovery Legislation


- Resource Recovery Bill signed into law in July 2014
- Grants the Metropolitan Water Reclamation District of Greater Chicago the authority to capture recovered resources and produce renewable energy resources.
- "The District has the opportunity and the ability to change the approach to wastewater treatment from that of a waste material to be disposed of to one of a collection of resources to be recovered, reused, and sold, with the opportunity to provide the District with additional sources of revenue and reduce operating costs."

Wastewater as a renewable resource

A paradigm shift is underway!

MWRD's Resource Recovery Efforts

WATER

DW Aurora Ra

Raw Fox River

During Summer

Comparison of Drinking Water Regulatory Limits and Raw Intake for Aurora (Fox River) and Egan WRP Effluent

Analyte	Units	Drinking Water Regul. Limits Fox River Raw		Egan WRP Effluent	
Alkalinity	mg/L		266	254	
Aluminum	mg/L	0.05-0.2 0.25			
Arsenic	mg/L	0.01 0		<0.05	
Barium	mg/L	2.0	0.10	0.016	
Beryllium	mg/L	0.004	ο	<0.001	
Boron	mg/L	0.6/1.0	0.22		
Cadmium	mg/L	0.005	0	<0.001	
Chloride	mg/L	250	116	171	
Chromium	mg/L	0.10	ο	<0.005	
Copper	mg/L	1.3	0.003	<0.005	
Cyanide	mg/L	0.2	ο	<0.006	
Fluoride	mg/L	0.9-1.2	ο	0.9	
Iron	mg/L	0.3	30	<0.1	
Lead	mg/L	0.015	ο	<0.02	
Manganese	mg/L	0.05	0.07	0.01	
Nickel	mg/L	0.10	0.002	<0.009	

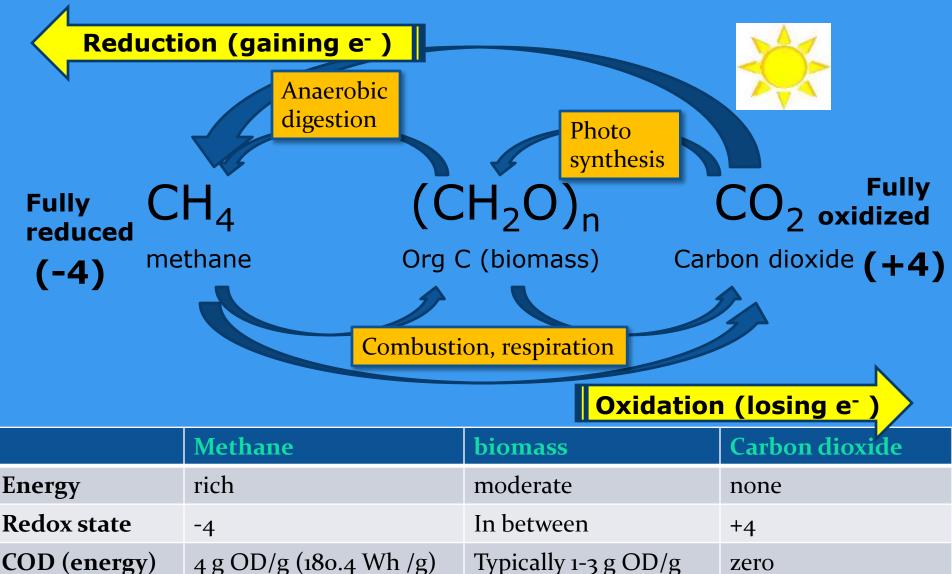
Comparison of Drinking Water Regulatory Limits and Raw Intake for Aurora (Fox River) and Egan WRP Effluent

Analyte	Units	Drinking Water Regul. Limits	Fox River Raw	Egan WRP Effluent	
Nitrate	mg/L	10	1.83	17.65	
Selenium	mg/L	0.05	ο	<0.009	
Silver	mg/L	0.10	ο	<0.001	
TDS	mg/L	500	615		
Sulfate	mg/L	250	52	73	
Thallium	mg/L	0.002	ο		
Turbidity	NTU	0.3	9.78		
Zinc	mg/L	5	0.01	<0.03	
ТР	mg/L		0.05 to 0.44	3.2	
DO	mg/L		6.36 to 11.35	8	
TKN	mg/L		0.7 to 2.3	2	
BOD ₅	mg/L		< 2 to 7	<3	
FC	#/100 mL		2 to >5000	<29	
TSS	mg/L		2 to 64	<3	

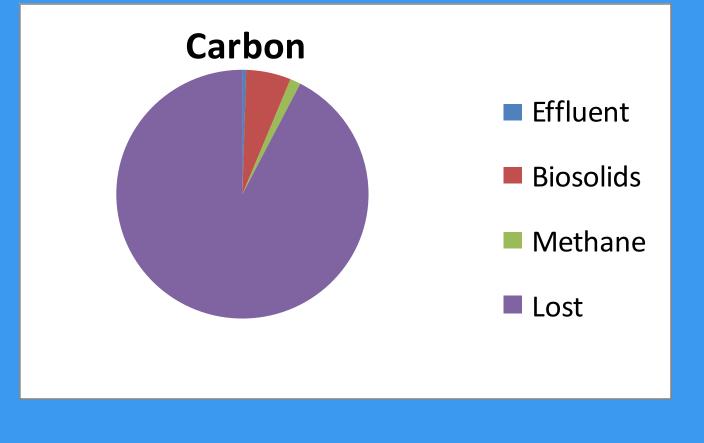
All Water is Used Water "You Probably Never had a glass that did not go through 7 Native Americans, 12 settlers and 50 buffaloes before you got it"

John R. Sheaffer

MWRD's Water Reuse Initiative


MWRD's Calumet WRP Reclaims ~ 250 MGD

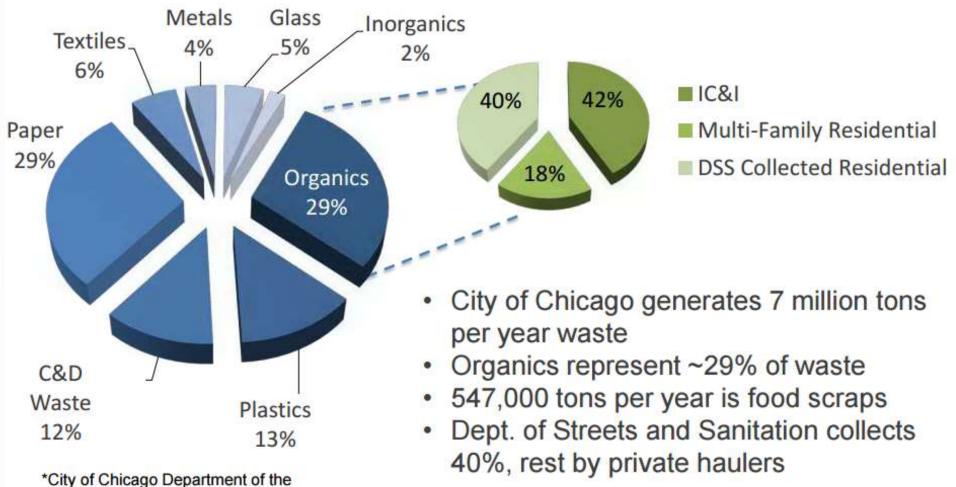
- MWRD Signed a Public/Private Partnership with Illinois American Water
- Illinois American Water to further polish effluent from Calumet WRP for Non-Drinking Water Needs of Large Industrial Customers
 - Fabricating
 - Processing
 - Washing
 - Diluting
 - Cooling
 - Transporting


MWRD's Resource Recovery Efforts

ENERGY

Energy states of carbon all about biorecycling

Mass Balance for 7 WRPs


Influent 545,084 t/yr

Anaerobic Digestion Feedstock Market Analysis & Challenges

Organic Feedstock	Availability
FOG, Yellow Grease	Readily available in Chicago. But competitive uses.
Good quality industrial food waste	Available, often sold for animal feed
Source separated food wastes	Variable availability, cannot guarantee long-term supply, cannot control quality
Wet Commercial Waste/ Municipal Solid Waste	Available in large quantities, but organic material co-mingled with other debris

Chicago Waste Diversion and Waste Characterization Study (2007)*

Environment

Calumet WRP Organic Waste Receiving Plan

Feedstock Type	Quantity (ton/day) (approximate)	Biogas Generation (sfc/day)
Organic Fraction WCW	285	1,617,093
Liquid Waste	120	107,930
FOG	35	126,976
Total	440	1,852,000

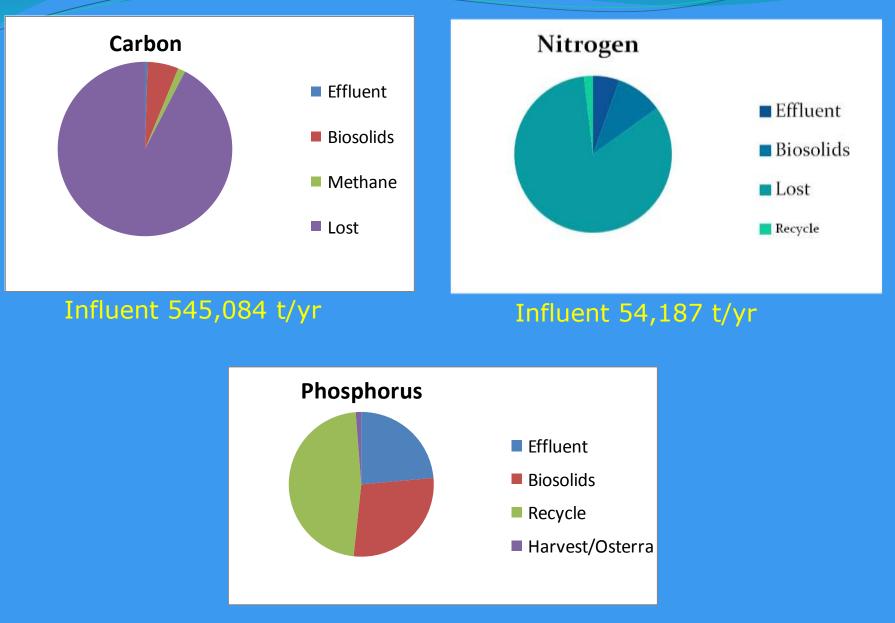
- Increase biogas production by 160%
- Total heating value: 1,770 mmBTU/day
- Equivalent to heating demand of 6,400 households
- Over \$1 million/yr revenue from tipping fees


Renewable Energy – Biomethane Production

- Clean biogas using Pressure Swing Absorption (PSA)
- Produce 1,500 mmBTU/day pipeline quality gas ("biomethane")
- Biomethane sold to natural gas pipeline
- Sale price of biomethane connected to market RIN value of biofuel under EPA's Renewable Fuel Standards program
- Potential revenue of \$7 million/yr, assuming recent RIN market prices and natural gas prices

Photo courtesy of Ameresco Inc.

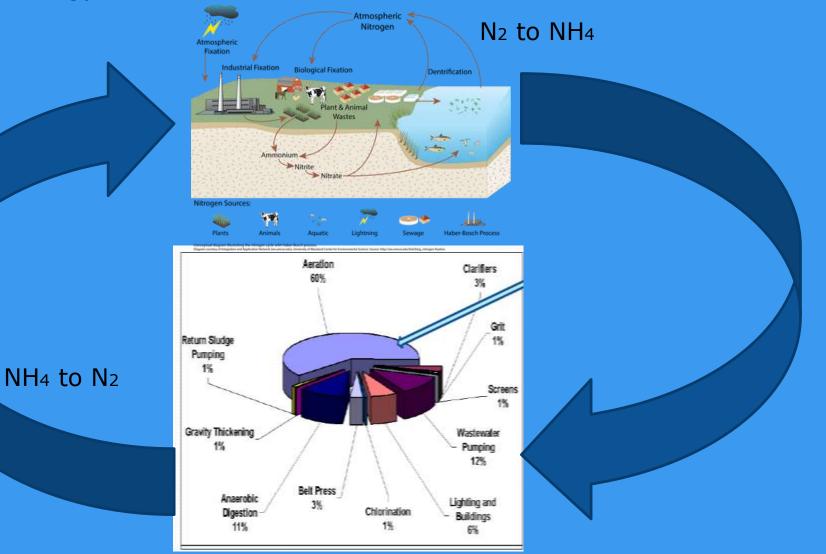
New Technologies on Horizon



MWRD's Resource Recovery Efforts

NUTRIENTS -

C,N,&P


Estimated Nutrient Balance for 7 WRPs

Influent 12,383 t/yr

Classic Example of Nitrogen

Energy Intensive Haber Bosch Process to Make Ammonia

WWTP Activated Sludge Process

... "Emerging Issue" Phosphorus

Phosphorus Famine: The Threat to Our Food

Supply This underappreciated resource--a key component of fertilizers-is still decades from running out. But we must act now to conserve it, or future agriculture could collapse

By David A. Vaccari

From The Times

June 23, 2008

Scientists warn of lack of vital phosphorus as biofuels raise demand

Leo Lewis, Asia Business Correspondent

NEWS SCAN

Scientific American – November 2009 Technology

Sewage's Cash Crop

How flushing the toilet can lead to phosphorus for fertilizers BY KATHERINE TWEED

TUCKED AWAY IN OREGON'S WILLAMETTE VALLEY, THREE MASsive metal cones could help address the world's dwindling supply of phosphorus, the crucial ingredient of fertilizers that has made modern agriculture possible. The cones make consistently highquality, slow-release fertilizer pellets from phosphorus recovered at the Durham Advance Wastewater Treatment Facility, less than 10 miles from downtown Portland. By generating about one ton

WASTEWATER WONDER: Ostara's Crystal Green, a slow-release fertilizer, incorporates phosphorus retrieved from sewage streams.

The Disappearing Nutrient

Phosphate-based fertilizers have helped spur agricultural gains in the past century, but the world may soon run out of them. Natasha Gilbert investigates the notential phosphate crisis.

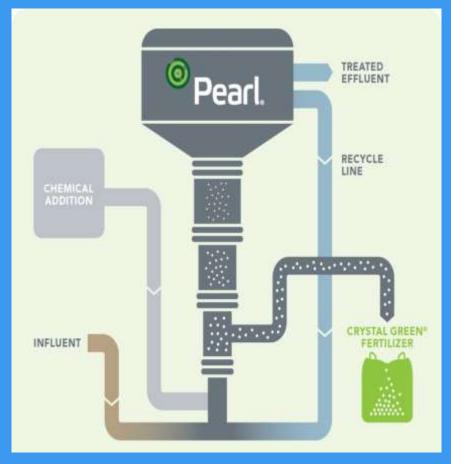
Phosphorus Recovery – Stickney Centrate Black & Veatch/Ostara Selected

- Black and Veatch
 - To work in conjunction with District for the Design & Build of the P-recovery system
- Ostara
 - Pearl Process: Intentional manufacturing of struvite for fertilizer
 - Final product (Crystal Green[®]) marketed and sold by Ostara

What is Struvite?

 $Mg^{2+} + NH_4^+ + PO_4^{3-}$

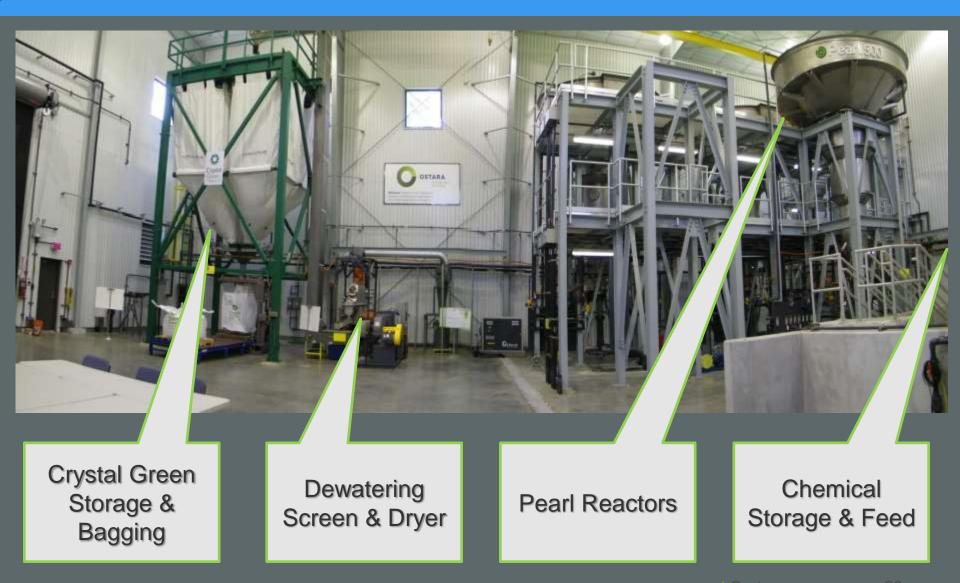
MgNH₄PO₄·6H₂O


- Naturally occurring
- Exists in most wastewater plants
- Forms mostly in anaerobic digesters and post-digester
 operations
- Increases O & M costs
 - Digester cleaning
 - Chain knocking
 - Flush water
- Impacts plant reliability

Principle of Technology

- Centrate flow pumped through the bottom of the reactor.
- Supersaturation conditions (driving force).
 - Inject NaOH to raise pH to ~ 7.7
 - Inject MgCl₂ at a molar ratio of 1.1 to 1 (Mg to P)
 - Spontaneous crystal nucleation occurs
- As chemical driving force reduces, deposition on surface of crystals occurs.
 - Thermodynamically favorable as surfaces reduce chemical energy needed for precipitation

Finished Product


High Purity (99.5% Struvite) 5-28-0 +10% - Slow Release Fertilizer Nitrogen | Phosphorus | Potassium + Magnesium

Complete Ostara System

Market for Struvite

Struvite from Ostara systems marketed as
 Crystal Green* - 5-28-0 +10%Mg
 Nitrogen | Phosphorus | Potassium + Magnesium

Agriculture

Specialty

Turf

Ornamental

- Premium Performance
- High Value
- Established distribution in US and

Europe

- Strong partnerships with fertilizer blenders, distributors and dealers

How Much P will be Harvested?

Stickney WRP Centrate Data		Proposed Pearl [®] Process Solution		
Flow (MGD)	~ 2	Ortho-P Removal	~ 74-80%	
Ortho-P Conc. (mg/L)	81	Mass of P Removed (lbs/d)	923	
NH ₃ -N Conc. (mg/L)	637	Ammonia Removal (%)	4	
Mg Conc. (mg/L)	49	Mass on NH3-N Removed (lbs/d)	417	
pН	7.4			
Potential Crystal Green [®] Production Rate (tons/yr) 1300				

Enough to Meet Corn Crop P requirement for ~ 10,000 Acres in Illinois

HB1445 - Landmark Regulation Passed in Illinois in July 2015

• Amends the Environmental Protection Act. Provides that "pollution control waste", "sludge", and "waste" do not include exceptional quality biosolids.

New Initiative - Composting at Calumet WRP ~ 250 MGD

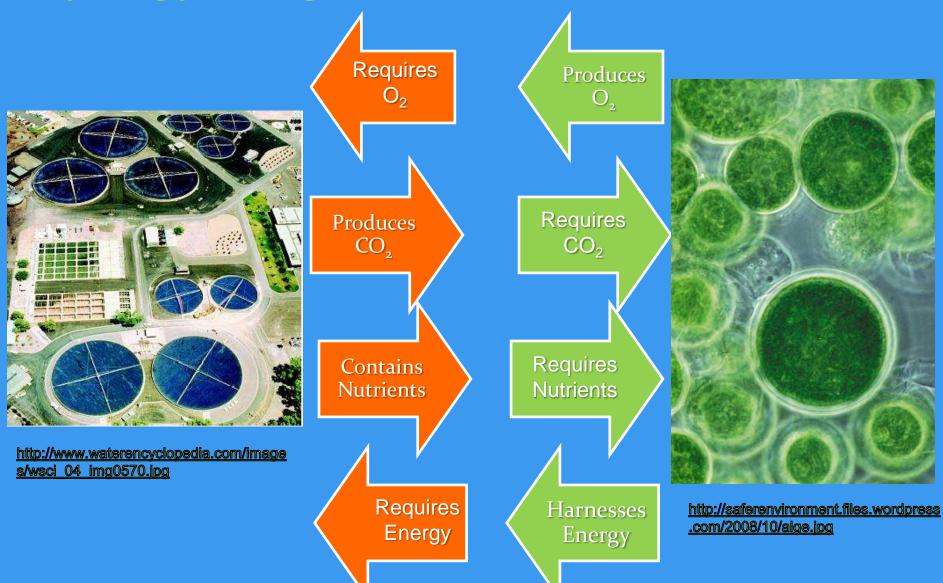
- Produces ~30,000 t Biosolids/Year
- City of Chicago has to dispose wood chips due to ash borer
- District is going to produce ~ 40,000 tons of compost annually using Gore Cover Technology

Other Biosolids Products at MWRD Class A Heat Dried ~ 55,000 tons Class A Lagoon Aged and Air Dried ~ 15,000 tons Centrifuge Cake for Farmland Program ~ 60,000 tons

Nutrient Recovery - Phycoremediation

• Principle

• Use of algae for nutrient uptake from wastewater


sunlight 106 CO₂ + 16 NO₃⁻ + HPO₄²⁻ + 122 H₂O + 18 H⁺ \rightarrow C₁₀₆H₂₆₃O₁₁₀N₁₆P (algae) + 138 O₂

• Benefits

- Can become a beneficial product
- Energy positive read use as biofuel or digester amendment
- Less impact to biosolids -> maintain optimal N:P ratio in biosolids
- Disadvantages
 - Large land area required not practical for urban wastewater agencies
 - Lack of understanding of microalgae physiology in engineered processes
 - Unpredictability of mixed community dynamics in naturally-lit systems

From Cormier 2010

Synergy of Algae and Wastewater

O'Brien Revolving Film Bioreactors

Estimated Benefits of Phycoremediation

Waste Stream	Potential Algae Biomass t/yr	Carbon dioxide fixed t/yr	Fraction of MWRD C Footprint	Estimated Algae Value , m\$/yr Bio-fuel Nutrients Bio-plastics (N&P + C)		
7 WRPs Effluent	270,648	487,166	0.96	81	32 + 4	271
3 WRPs Side Streams	50,918	91,652	0.18	15	6 + 1	51

1.8 kg Carbon dioxide fixed for 1 kg of algae biomass produced
1 ton algae produces ~ 3 barrels of oil @ \$100/barrel = \$300
~ \$0.45/lb algae for bio-plastics
\$0.75 /lb of N and \$0.75/lb P from commercial fertilizers, C trading \$30/t
4 year average District C footprint was(~506,000 MT CO₂e)

High Value Products from Microalgae

• <u>Grow Haematococcus pluvialis</u> (MicroAlgae)in waste water to produce Astraxanthin, the red color dye while removing the nutrients from waste water.

Conclusions

MWRD has Adopted the Paradigm of Resource Recovery under the Leadership of New Executive Director

Potential is Immense

......AND Still a Long Road Ahead to Make a DifferenceBUT Most Importantly We are Moving in the Right Direction.