Jutta Kray \& Balázs Fehér

Saarland University
Saarbrücken
Germany

Age Differences in the Transfer of Task-Switching Training:
 The Impact of Working Memory and Inhibition Control Demands

Research Questions

What are the potentials/limits of cognitive enhancement in older age induced by practice in task switching?

Do we find age differences in training success (i.e. transfer to untrained cognitive tasks)?

Age in Years

How important is the type of training? Are higher demands on working memory and inhibitory control critical for the training success in younger and older adults?

Task Switching \& Aging

Task switching as a key component of cognitive control

 (for a review see Kiesel et al., 2010)Larger age differences in task switching at the global than at the local level (for reviews see Kray \& Ferdinand, 2014;
Wasylyshyn et al., 2011; see also Karayanidis et al., 2011)

- general switch costs (mixed tasks/single tasks) > specific switch costs (switch/repetition trials)

Older adults' impairments in maintaining/biasing of relevant task-set representations (Braver \& Barch, 2002; Miller \& Cohen, 2001

- overlapping task-set representations (e.g., Mayr, 2001)
- prefrontal networks

Practice \& Transfer of Training in Task Switching

Enhancement of task switching (reduction of taskswitching costs with practice) in younger and older adults
(e.g., Cepeda et al., 2001; Kray \& Lindenberger, 2000)

Near transfer to untrained, but structurally similar switching tasks

- compensation model (e.g., Karbach \& Kray, 2009)

Mixed results for far transfer effects to other cognitive task domains

- improvements in WM, inhibitory control, fluid intelligence (Karbach
\& Kray, 2009; Kray et al., 2012; but see Pereg et al., 2013; Zinke et al., 2012)

However ...Why This Broad Transfer?

Task A
Food

tasks \& stimuli in the
Karbach \& Kray 2009 study

* ambiguity at stimulus and response level
high demands on interference control
- no task cues but predictable sequences of AABBAABB
> high demands on keeping track the task sequence

Main Goals

To determine ...

(1) the relative contribution of different cognitive control components by varying demands on

- interference control (stimulus ambiguity)
- working memory (task cueing)
- switching
(2) the transfer scope
(3) long-term maintenance of training effects (after 6 months)

Training Conditions

Interference control

Univalent stimuli

Bivalent stimuli

Study Design

Pretest

(1 session)

Task switching
(A or B) (A and B)

* Inhibition
- Color Stroop
- Num Stroop
* Verbal WM
- Reading span
- Counting span
* Updating
- n-back
- AX-CPT)
* Reasoning
- Raven
- Bomat

Training
 (4 sessions)

Posttest 1

(1 session)

Training groups:

(1) Single tasks (C or D)
(2) Task switching (C + D): with cues - univalent
(3) Task switching ($\mathrm{C}+\mathrm{D}$): no cues - univalent
(4) Task switching ($C+D$): with cues - bivalent
(5) Task switching ($\mathrm{C}+\mathrm{D}$): no cues - bivalent

Task switching

(A or B) (A and B)

* Inhibition
- Color Stroop
- Num Stroop
* Verbal WM
- Reading span
- Counting span
* Updating
- n-back
- AX-CPT)
* Reasoning
- Raven
- Bomat

Prediction

Pretest

(1 session)

Task switching
(A or B) (A and B)

* Inhibition
- Color Stroop
- Num Stroop
* Verbal WM
- Reading span
- Counting span
* Updating
- n-back
- AX-CPT)
* Reasoning
- Raven
- Bomat

Training
 (4 sessions)

Posttest 1

(1 session)

Training groups:

(1) Single tasks (C or D)
(2) Task switching (C + D): with cues - univalent
(3) Task switching (C + D): no cues - univalent
(4) Task switching (C + D): with cues - bivalent
(5) Task switching ($\mathrm{C}+\mathrm{D}$): no cues - bivalent

Task switching
(A or B) (A and B)

* Inhibition
- Color Stroop
- Num Stroop
* Verbal WM
- Reading span
- Counting span
* Updating
- n-back
- AX-CPT)
* Reasoning
- Raven
- Bomat

Predictions

Pretest

(1 session)

Task switching
(A or B) (A and B)

* Inhibition
- Color Stroop
- Num Stroop
* Verbal WM
- Reading span
- Counting span
* Updating
- n-back
- AX-CPT)
* Reasoning
- Raven
- Bomat

Training
 (4 sessions)

Posttest 1

(1 session)

Training groups:

(1) Single tasks (C or D)
(2) Task switching ($\mathrm{C}+\mathrm{D}$): with cues - univalent
(3) Task switching ($\mathrm{C}+\mathrm{D}$): no cues - univalent
(4) Task switching (C + D): with cues - bivalent
(5) Task switching (C + D): no cues - bivalent

Task switching
(A or B) (A and B)

* Inhibition
- Color Stroop
- Num Stroop
* Verbal WM
- Reading span
- Counting span
* Updating
- n-back
- AX-CPT)
* Reasoning
- Raven
- Bomat

Results: Training Data

Cues - univalent

Results: Training Data

Results: Training Data

Results: Training Data

No cues - bivalent
Cues - bivalent
No cues - univalent
\rightarrow No differences in training-related improvements in task switching across training and age groups

Baseline Performance

Results: Near Transfer

* values correspond to Cohen's d"

Results: Near Transfer

Older: resolving task interference in a dual-task situation

Results: Far Transfer

Summary

\% smaller switch costs when task ambiguity and memory load is reduced (treatment effects of training condition)
\% large enhancements of task-switching performance in younger and older adults ($d^{〔}=.62-1.59$)
\% larger near transfer effects in older adults than in younger adults
resolving interference in a switching situation
> Multi-tasking training enhanced midline frontal power and frontalposterior theta coherence (see Anguera et al., 2013)
\% no far transfer to other cognitive control tasks

Discussion \& Conclusion

Why no far transfer?

- High performance at pretest ...
- Less reliable measures ...
- Task-specific features: A4 versus
\% Training enhancing prefrontal control networks in order to promote resolving interference in multitasking situations may be the most promising training intervention in the elderly

Caroline Fischer
Anna Schramek Cindy Niesser Jenny Sinzig

THANK YOU FOR YOUR ATTENTION!

Pre- and Posttest Tasks

Training Tasks

Measurement of Task Switching

Single task blocks: A A A A A A ... (Animal)

$$
B B B B B B \ldots \text { (Color) }
$$

Mixed task blocks: $\mathbf{A} \mathbf{A} B B \mathbf{A} \mathbf{A B} B \ldots$

> General switch costs $=$ mixed - single tasks
> \Rightarrow Maintaining / Selection between tasks

Measurement of Task Switching

Single task blocks: A A A A A A ... (Animal)
$B B B B B B \ldots$ (Color)
Mixed task blocks: A ABBAABB...

Specific switch costs =

Switch trials (A , A) - repetition trials (AA,)
\Rightarrow switching at a local level

Lifespan Changes in Task Switching

