

Hierarchical Auditory Prediction

I predict, therefore I am

Srivas Chennu PhD

Background

The Bayesian brain

generates predictions about the sensorium Is evolutionarily driven to make better and cleverer predictions

Hierarchy of increasing complexity

Each perceptual level makes predictions And learns from its mistakes (prediction error)

Current thinking

Maybe the brain is Bayes-optimal

$$p(beliefs_{new}) = p(data_{new})$$

 $p(beliefs_{old})$

Hierarchical Auditory Prediction

Stimulus

Attention is the precision of prediction

Friston, 2008

Laterality Global standard Local standard Local standard Local deviant Local deviant Local deviant deviant deviant deviant 14.25%

MMN (100-300ms)

- Negativity indexing early prediction error
- Pre-attentional
- Diminished by top-down attention

attend auditory attend visual

P300 (300-600ms)

- Positivity indexing late prediction error
- Accompanies conscious perception
- Sharpened by top-down attention

CNV (-600-0ms)

- Slow drift that indexes expectation
- Modulates attentional focus to facilitate perception

Chennu et al., 2013

Global P300

Expectation CNV

Sources

Topography

Frontal Pole

* Dehaene et al., 1998; Wacongne et al., 2011; Chennu et al., 2013

Hierarchical Auditory Prediction

Friston, 2008

Experiment II: Omissions

Omission-evoked Responses

Modulating Attention

Modulating Expectation

Dynamic Causal Modelling

Interim Summary

Hierarchical predictive coding theory

- Prediction errors flow upward
- Predictions (shaped by expectations) flow downward
- Attention as the precision of prediction

Integrating common ERP components

- The MMN is pre-attentional and diminished by expectation
- The P300 is attention-dependant and enhanced by expectation
- The CNV is a fine-grained marker of this top-down expectation

Within this framework

- The omission is a response to the absence of an expected stimulus
- Hence a pure index of the expectation-driven prediction signal
- Which projects downward and interacts with attention

Applications in brain injury

- Prognosis
- Diagnosis

The Challenge

Plum and Posner, 1982; Braakman et al., 1988; Choi et al., 1988; Yingling et al., 1990

^{*} Statistically significant with single-subject non-parametric **global field power (GFP)** analysis

Acute Prognosis

O Statistically significant with single-subject non-parametric global field power (GFP) analysis

Chronic Diagnosis

Bekinschtein et al., 2009; Faugeras et al., 2012

Why Does Prediction Matter?

For prognosis

Early prediction is temporally and spatially localised Requires few cortical microcircuits Presages the reestablishment of many more...

For diagnosis

Late prediction is temporally and spatially distributed Engages many disparate microcircuits Results in *interoceptive* state externally akin to consciousness

Bastos et al., 2012

Future Directions

Theoretical

Modeling failures of hierarchical prediction

Detailed understanding of the link between prediction and consciousness

Clinical

Quantitative control of EEG quality Closed-loop calibration of derived ERP scores Single-trial decoding, complexity analysis

Thanks!

Dr. Stein Silva

Prof. David Menon

Dr. Tristan A. Bekinschtein

Division of Anaesthesia University of Cambridge

MRC Cognition and Brain Sciences Unit Cambridge

Prof. John Pickard

Division of Neurosurgery University of Cambridge

Dr. Adrian M. Owen

The Brain and Mind Institute **University of Western Ontario**

Cambridge University Hospitals MHS

NHS Foundation Trust

Prognosis

Primary Auditory Effect

14 p > 0.0512 **GFP Score** 10 6 4 2 5 10 15 20 0 **Outcome CRS-R**

Interaural Global Effect

Prognosis

Monaural Local Effect

Monaural Global Effect

