

The Ohio State University

Ohio Department of **Transportation**

A NOVEL COST AND CONDITION BASED INDEX FOR ASSESSMENT OF BRIDGES

April 26, 2017

Ehsan Fereshtehnejad¹, PhD Candidate Jieun Hur¹, Ph.D., PE Abdollah Shafieezadeh¹, Ph.D. Mike Brokaw², PE

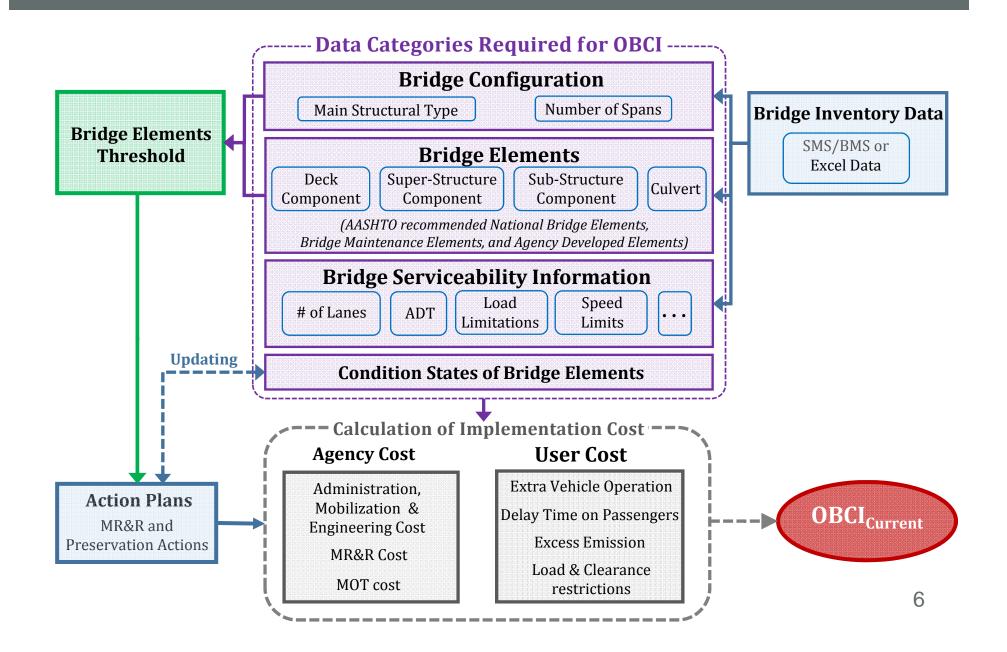
¹Department of Civil, Environmental and Geodetic Engineering, The Ohio State University ²Office of Structural Engineering, Ohio Department of Transportation

1

Outline

- Introduction
- Overview of OBCI
 - Features of OBCI
 - Framework of OBCI
 - $\circ \ \mathbf{OBCI}_{\min} \, \& \, \mathbf{OBCI}_{\mathrm{current}}$
- Calculations of cost terms in OBCI
- Case Study 1: Detailed analysis of OBCI for one bridge
 - $\circ~$ Element-, component-, and bridge-level $OBCI_{min}\,\&\, OBCI_{current}$
 - Assisting in decision-making
 - $\circ~$ Capability of OBCI in reflecting serviceability parameters in the index
- Summary and Conclusions

- Bridges are key components in transportation systems that support mobility in the nation.
- They are diverse in **type**, **configuration** and **age**, and are exposed to various **environmental** and **traffic conditions**.
- These factors pose a major challenge for performance evaluation and management of bridges.
- Furthermore, each state is responsible for managing a large number of bridges, while its budget is limited.
- **Bridge indices** are then used for the management of such large assets.

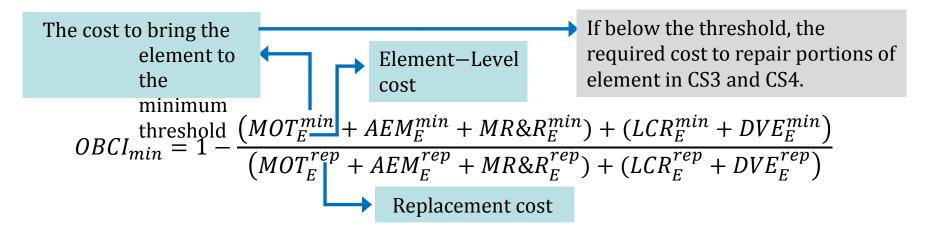

OBCI has the following features

- Evaluates bridge conditions at **element**-, **component-, bridge**-, and **network**-levels.
- Reflects objectively **negative effects of defects**, and **positive impacts of improving actions** in the index.
- Represents the **needs** of bridges to reach a **target state**.
 - For objectivity, needs are expressed in terms of cost as a unified measure; removes biasness from weight factors.
 - For comprehensiveness, needs account for all direct and indirect consequences for agencies and users.
- Is based on the recent **AASHTO condition-state** rating system.

- To assure **minimum level of safety and serviceability**, state DOTs set up target conditions **at components-, bridges-levels**:
 - E.g. Ohio defines 15% as the maximum allowable percentage for the area of its bridge decks with NBI general appraisal ratings less than 5.
- In line with AASHTO condition-states, **at element-level**, we have defined the following minimum condition-state thresholds:
 - The percentage of NBE, defects and primary elements of ADE in condition-states 3 should be less than 2%, while no quantities of these elements should be in condition-state 4.
 - The percentage of BME and non-primary ADE in condition-state 3 and 4 should be less than 10%.

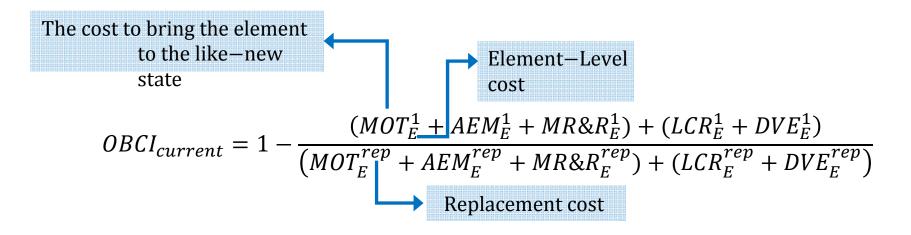
The Ohio State University

In *OBCI_{min}* the target is: all elements of the system **reach** their **minimum thresholds**.
 Need to meet min thresholds for that


system in the worst

 $OBCI_{min} = 1 - \frac{\sum need \ to \ meet \ min \ thresholds(\$)}{replacement \ cost(\$)}^{condition}$

- The need is the imposed costs on users and agencies because of MR&R actions to make all elements reach their minimum thresholds.
- An ideal *OBCI_{min}* should be equal to **1**;
 - All elements are in condition-states above their minimum thresholds and thus the bridge is structurally/operationally acceptable.


• As a particular case, for element-level, *OBCI_{min}* is defined as follows:

- *MOT=Agency cost of Maintenance Of Traffic*
- AEM=Agency cost of Administration, Engineering and Mobilization
- *MR&R* = *Agency cost of applying Maintenance, Repair and Rehabilitation*
- LCR=User cost from Load and Clearance Restrictions
- *DVE=User cost from delay time, vehicle operation, and excess emission*

- In OBCI_{current} the target is: all elements of the system meet their like-new state:
 - Portions of the element in CS3 and CS4, should be repaired to be improved to at least CS2.
 - Portions of the element in CS2 should be maintained to stay in CS2.

- MR&R costs are calculated at element-level, depending on:
 - Material and type of elements.
 - The current condition-state of the elements.
 - The target condition-state of the elements.

Element	Condition		Condition After									
Element	Before	1		2	3		4					
		Do nothing	0.00									
1	1	Surface clean	17.15									
				Do nothing 0.00								
Floorbeams	2	Replace unit	275.06	Power tool clean and paint	22.40							
/Steel	2			Replace paint system	98.00							
/31221												
				Power tool clean and paint	44.80							
	3	Replace unit	275.06	Replace paint system	98.00	Do nothing	0.00					
				Major Rehab	222.79							
	4	Replace unit	275.06					Do nothing	0.00			

- For component-level MR&R costs: **reduction factor** of **0.80** is considered.
- For bridge-level MR&R costs: **reduction factor** of **0.90** is considered.¹⁰

- MOT costs are calculated based on:
 - Ohio reported costs per hour for crew, equipment, and police.
 - \$260/hour, with 60% for workers, and 40% for equipment.
 - \$65/hour for law enforcement.
 - Logical considerations for the times and conditions that crew, equipment, and police are in the work site.
 - On average, laborers work 8 hours/day.
 - Law enforcement is present only on weekdays when more than 40% of the road is closed.

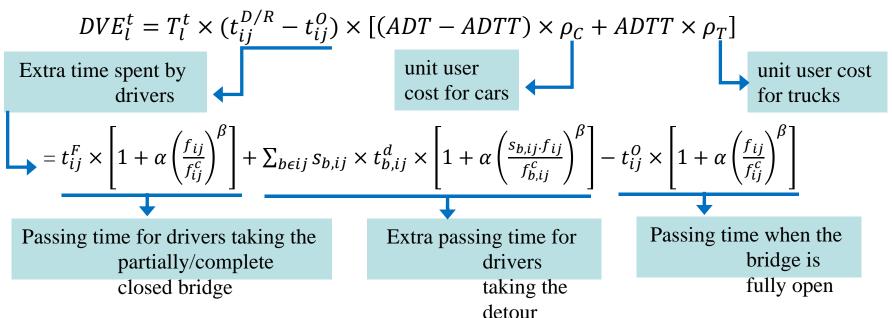
$$MOT_{l}^{t} = \left(8 \times T_{l}^{t'} \times \$260 + 8 \times T_{l}^{t'} \times F^{N}cl} \times \$65 + 16 \times T_{l}^{t'} \times 0.4\right)$$

$$\left(2 \times \left[\frac{T_{l}^{t'}}{7}\right] \times 24 \times 0.4 \times \$260\right)$$

Equipment cost incurred during other times in the working days

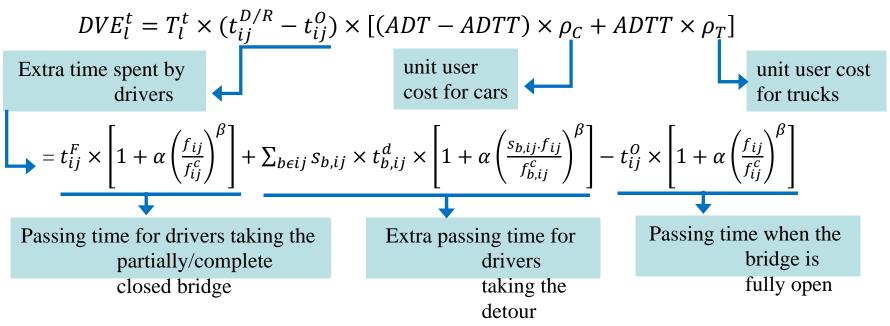
$$\left(2 \times \left[\frac{T_{l}^{t'}}{7}\right] \times 24 \times 0.4 \times \$260\right)$$

Equipment cost incurred on 11



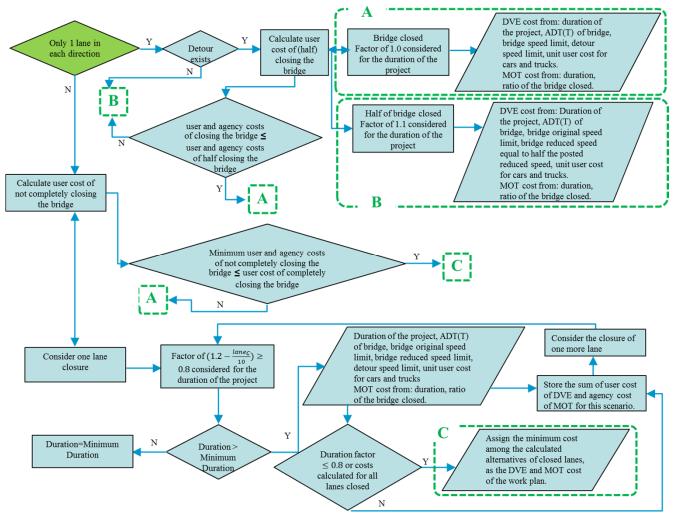
- A primary input to the calculation of MOT, DVE and LCR costs is the duration of MR&R actions.
- Correct identification of these values is important to arrive at accurate OBCI.
- For automation of estimating element-level durations of work plans:
 - 1) Elements are categorized based on their cost units and materials.
 - For each category, a formula is developed that calculates the duration as a function of the quantity of element, and the type of action, i.e.
 repair or replacement.

$$T_{e}^{repair} = RF \times \left(N_{e} \times 1 \frac{day}{each}\right) \ge 1 day$$
Reduction
Factor
$$\frac{1}{\left(1 + \frac{N_{e}}{100} \times 3\right)} \ge \frac{1}{4}$$
12


• DVE cost is systematically calculated as follows:

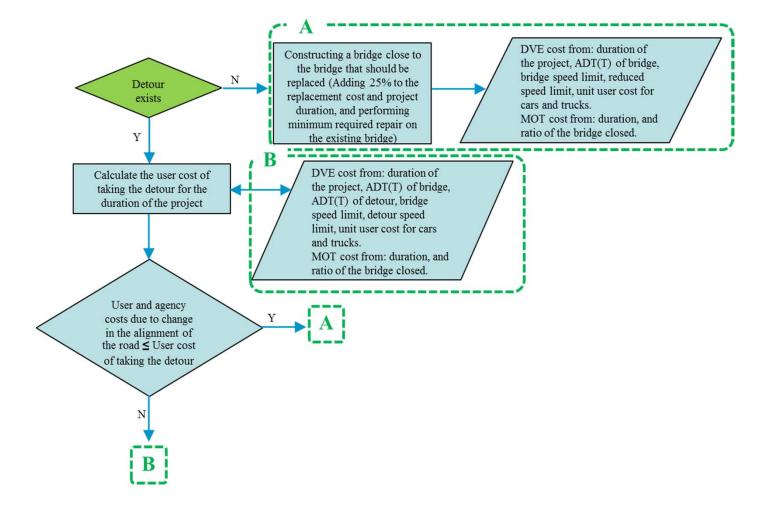
- It uses serviceability data form **inventory documents**, including: ADT, ADTT, detour length, number of lanes on the bridge, number of traffic directions.
- It is based on **logical assumptions** and **considerations** for other required parameters, such as $s_{b,ij}$.

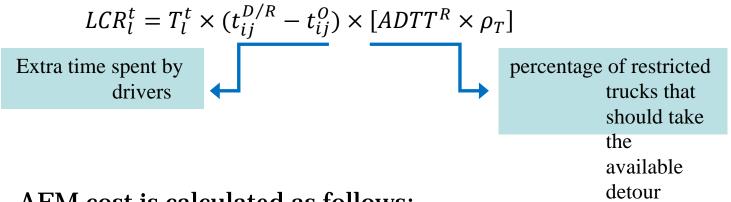
DVE cost is systematically calculated as follows:



- DVE cost is sensitive to **number of closed lanes**, since this parameter determines the ratio of vehicles taking detour, $s_{b,ij}$.
- An **optimization procedure** is developed to identify this factor, by:
 - Finding the scenario for the number of closed lanes that minimizes the incurred costs of MOT and DVE.

Cost Terms in OBCIs *: Calculation of MOT and DVE Costs*


 The flowchart for the calculation of optimized MOT and DVE costs for repair work plans is presented here:


Cost Terms in OBCIs : Calculation of MOT and DVE Costs

 The flowchart for the calculation of optimized MOT and DVE costs for replacement work plans is shown here:

• LCR cost can be calculated in the same way as DVE cost:

• AEM cost is calculated as follows:

$$AEM_{l}^{t} = \beta \times (MOT_{l}^{t} + MR\&R_{l}^{t})$$

Overhead factor=0.25

- For the demonstration of OBCI, a bridge in Ohio is selected:
 - A two way, two lane bridge with three main spans and nine continuous prestressed box beams, passing over a river.
 - It has a low ADT of 50, and is on a path with no detour.
 - Element-level inspection data is available for this bridge.

THE OHIO STATE UNIVERSITY

				C	onditic	on-Stat	е
Component	Element	Unit	QTY	CS1	CS2	CS3	CS4
	Approach Wearing Surface	Each	2	0	2	0	0
Approach Itoma	Approach Slab	SF	810	146.5	405	202.5	56
Approach Items	Embankment	Each	4	0	0	0	4
	Guardrail	Each	4	4	0	0	0
	Floor/Slab	SF	3795	3783	4	8	0
	Wearing Surface	SF	2970	1140	1140	540	150
Deck Items	Curb/Sidewalk/Walkway	LF	110	105	5	0	0
Deck liems	Railing	LF	220	180	30	10	0
	Drainage	Each	2	0	0	2	0
Expansion Joint		LF	69	14	15	40	0
Superstructure	Alignment	Each	3	3	0	0	0
•	Beams/Girders	LF	990	987	1	2	0
Items	Bearing Device	Each	72	72	0	0	0
	Abutment Walls	LF	70.06	61.1	9	0	0
	Pier Caps	LF	70.1	69.1	0	1	0
Substructure	Pier Columns/Bents	Each	4	4	0	0	0
Items	Wingwalls	Each	4	4	0	0	0
	Scour	Each	4	4	0	0	0
	Slope Protection	Each	2	2	0	0	0
	Alignment	LF	200	200	0	0	0
Channel Items	Protection	LF	200	200	0	0	0
	Hydraulic Opening	EA	4	4	0	0	0
Sign Items	Utilities	LF	220	220	0	0	0

THE OHIO STATE UNIVERSITY

Components	Elements		OBCI _{min}		0	BCI _{curren}	t
		Element	Comp.	Bridge	Element	Comp.	Bridge
Approach	Approach Wearing Surface	1.00			0.56		
Approach	Approach Slab	0.62	0.78		0.42	0.57	
Items	Embankment	0.00			0.00		
	Guardrail	1.00			1.00		
	Floor/Slab	1.00			0.98		
	Wearing Surface	0.76	0.90		0.58		
Deck Items	Curb/Sidewalk/Walkway	1.00			0.87	0.82	
Deck items	Railing	0.93	0.50		0.86	-	
	Drainage	0.56			0.56		
	Expansion Joint	0.70			0.70		
Superstructure	Beams/Girders	1.00	1.00	0.950	0.96	0.99	0.895
Items	Bearing Device	1.00	1.00		1.00	0.99	
	Abutment Walls	1.00			0.97		
Substructure	Pier Caps	1.00			0.97		
Items	Pier Columns/Bents	1.00	1.00		1.00	0.99	
	Wingwalls	1.00			1.00		
	Slope Protection	1.00			0.90		
	Alignment	1.00			1.00		
Channel Items	Protection	1.00	1.00		1.00	1.00	
	Hydraulic Opening	1.00			1.00		20
Sign Items	Utilities	1.00	1.00		1.00	1.00	20

The Ohio State University

Work Plan	Description	Agency cost of the work plan		OBCI _{current}	BHI
0	Condition of the bridge after inspection	-	-	0.895	0.944
A	Perform minimum required repair on elements with OBCI_{min} <1	\$130,810	9	0.928	0.961
В	Improve approach elements to like- new, and perform minimum required repair on other elements with OBCI _{min} <1	\$212,800	12	0.951	0.961
С	Improve deck elements to like-new, and perform minimum required repair on other elements with OBCI_{min} <1	\$233,620	13	0.966	0.961

- $\circ~$ Deck and approach components have the lowest OBCI (the only components with OBCI_min <1). MR&R work plans are suggested for these components.
- Generally, more effective and costly improving actions result in more increase in OBCI.
- However, BHI:
 - Just improves by 1.8%, even after costly work plans B and C.
 - Is not sensitive to maintenance actions that keep the portions in CS2.

 A sensitivity analysis is performed to show the ability of OBCI in reflecting the effect of variations in serviceability parameters such as ADT.

		ADT		
	Original ADT of the bridge (50)	25% of the capacity	50% of the capacity	75% of the capacity
OBCI_{Current}-Before Work Plan A*	0.90	0.85	0.78	0.51
OBCI_{Current}-After Work Plan A*	0.93	0.89	0.86	0.63

* Work Plan A: Perform minimum required repair on elements with $OBCI_{min} < 1$

- **o** OBCI is sensitive to the ADT value, which directly affects the user cost.
- As the ADT values increase, the advert consequences of maintaining/repairing actions on users become more significant compared to agency costs; therefore OBCI decreases.

- OBCI is a cost-based index that evaluates bridge performance at different levels of **element**-, **component**-, and **bridge-levels**.
- *OBCI_{min}* is calculated based on **cost incurred** to reach the **minimum** safe and serviceable state of the system.
- *OBCI_{current}* is calculated based on **cost incurred** to reach the **like-new** state of the system.
- Results show, as expected, the more severe the condition state of an element/component, the lower the corresponding values of OBCI.
- OBCI is shown to be helpful in **decision-making** among various work plan alternatives.

- Unlike BHI, OBCI is shown to be fully capable of reflecting the impact of defects as well as condition enhancements achieved by improving actions.
- In addition to agency costs, OBCI reflects the impact of user cost due to repair actions in the performance of bridges.
- OBCI **objectively** calculates a **comprehensive list of consequences**, yet it is **practical**, since:
 - For each bridge, it only requires inventory appraisal document, and inspection report.

Acknowledgement

This research is supported by the Ohio Department of Transportation through Grant 135240.

We would like to thank ODOT personnel including: Jared Backs, Amjad Waheed, Tim Keller, Cynthia Jones, Bradly Noll for providing data and valuable practical insights.

Thank You!

- Various indexes have been developed for different purposes. Some of these metrics include:
 - NBI rating, GA rating, SD, FO, Sufficiency rating, Vulnerability rating, BHI, BPI,
- These indexes are mostly developed through **subjective weight factors**, or do not consider **all consequences**.
- Thus, in collaboration with ODOT, an objective, comprehensive and practical performance measure, is developed .
- The index is called **Ohio Bridge Condition Index (OBCI)**.

Evaluation of OBCI for: Case Study 2

Inventory Bridge No.	Bridge Type	Year Built	No. of Spans	No. of lanes	Length (FT)	ADT	Detour length
Bridge 2	CONCRETE/ SLAB/CONTINUOUS	1963	3	2	79.5	28,620	1
Bridge 3	STEEL/BEAM/ CONTINUOUS	1973	2	8	113.8	139,740	1
Bridge 4	STEEL/BEAM/SIMPLE	1973	1	8	120.7	139,740	1
Bridge 5	STEEL/BEAM/ CONTINUOUS	1973	3	2	132.3	31,970	1
Bridge 6	STEEL/BEAM/ CONTINUOUS	1968	3	3	178.0	30,795	1
Bridge 7	STEEL/CULVERT/ FILLED	1971	1	4	88.0	31,000	4
Bridge 8	PRESTRESSED CONCRETE/BOX BEAM/SIMPLE	1967	16	2	805.8	3,511	0

27

- As a general trend, while not always true, elements/components/bridges with more severe condition-states, have lower OBCI values.
- OBCI of an element does not necessarily become 0 if the condition-state of all portions of that element is 4:
 - This is because the action of improving to condition 2 exists and its cost is less than the replacement cost (e.g. the backwall element of Bridge 6).
- The value of OBCI changes with the variation of user cost. This cost depends on factors such as:
 - ADT, availability of detours and the duration of the work plans.
- *OBCI_{min}* and *OBCI_{current}* are not only directly proportional to the severity of the condition-states if:
 - Contribution of user cost is at the same level or more than that of MR&R costs.

Components	Elements	0	BCI _{min}		ОВ	CI _{current}	
•		Element	Comp.	Bridge	Element	Comp.	Bridge
	Approach Wearing Surface	0.10			0.10		
Approach Items	Approach Slabs	1.00	0.57		0.51	0.44	
	Embankment	1.00	0.07		1.00] 0.44	
	Guardrail	1.00			1.00		
	Floor/Slab	1.00		0.95			
	Edge of Floor/Slab	0.58		0.17	_		
Deck Items	Wearing Surface	1.00	0.98		0.96	0.92	
Deck Itellis	Railing	1.00	0.98		1.00		
	Drainage	1.00			0.72		
	Expansion Joint	1.00			1.00		
Superstructure Items	Slab	1.00	1.00	0.84	0.95	0.95	0.54
	Abutment Walls	0.91			0.78		
	Pier Caps	1.00			1.00		
Substructure	Pier Columns/Bents	1.00	0.99		0.76	0.80	
Items	Wingwalls	1.00	0.99		1.00	0.60	
	Scour	1.00			1.00		
	Slope Protection	1.00			1.00		
Channel Items	Alignment	1.00	1.00		1.00	1.00	
	Hydraulic Opening	1.00	1.00		1.00	1.00	

THE OHIO STATE UNIVERSITY

		0)BCI _{min}		OE	CI _{current}	
Components	Elements	Element		Bridge	Element	Comp.	Bridge
	Approach Wearing Surface	1.00			0.44		
Approach Items	Approach Slabs	1.00	1.00		0.99	0.69	
	Embankment	1.00	1.00		1.00		
	Guardrail	1.00			1.00		
	Floor/Slab	1.00			0.99		
	Edge of Floor/Slab	1.00			0.80	0.99	
Deck Items	Wearing Surface	1.00	0.995		0.99		
Deck Itellis	Median	1.00	0.995		1.00		
	Railing	1.00			0.88		
	Expansion Joint	0.82			0.82		
	Beams/Girders	1.00		0.005	1.00	0.89	0.05
Superstructure	Diaphragm/X-Frames	1.00	1 00	0.995	1.00		0.85
Items	Bearing Devices	1.00	1.00		0.76		
	Prot. Coating System	1.00			0.52		
	Abutment Walls	1.00]	0.98		
Substructure	Pier Caps	0.96			0.96		
	Pier Columns/Bents	1.00	0.996		1.00	0.99	
Items	Backwalls	1.00			0.96		
	Wingwalls	1.00			1.00		
	Signs	1.00			1.00		
Sign Items	Sign Supports	1.00	1.00		1.00 1.00		
_	Utilities	1.00			1.00		

The Ohio State University

0		C)BCI _{min}	-	OE	CI _{current}	
Components	Elements	Element	Comp.	Bridge	Element	Comp.	Bridge
	Approach Wearing Surface	1.00			1.00	0.99	
Approach Items	Approach Slabs	1.00	1.00		0.99		
	Embankment	1.00			1.00		
	Guardrail	1.00			1.00		
	Floor/Slab	1.00			0.996	0.99	
	Edge of Floor/Slab	1.00			1.00		
Deck Items	Wearing Surface	1.00	0.99		0.99		
Deek items	Median	1.00	0.55		1.00		
	Railing	1.00			1.00		
	Expansion Joint	0.81			0.81		
	Beams/Girders	1.00		0.97	0.98	0.86	0.91
Superstructure	Diaphragm/X-Frames	1.00	0.08		0.97		
Items	Bearing Devices	0.88	0.98		0.64		
	Prot. Coating System	1.00			0.52		
	Abutment Walls	0.97			0.95		
	Backwalls	0.97	0.98		0.95	0.97	
Items	Wingwalls	1.00			1.00		
Sign Items	Utilities	0.12	0.12		0.12	0.12	

Components	Elements		OBCI _{min}		<i>OBCI_{current}</i>			
Componento	Liemento	Element	Comp.	Bridge	Element	Comp.	Bridge	
	Floor/Slab	1.00			0.95			
	Edge of Floor/Slab	1.00			1.00			
Deck Items	Wearing Surface	0.93	0.97		0.88	0.92		
	Median	1.00			1.00			
	Railing	1.00			0.90			
	Beams/Girders	0.96		0.97	0.69			
Superstructure	Diaphragm/X-Frames	1.00	0.99		0.75	0.75		
Items	Bearing Devices	1.00			1.00			
	Prot. Coating System	1.00			0.59		0.83	
	Abutment Walls	1.00			1.00			
	Pier Caps	1.00			1.00	1.00		
Substructure	Pier Columns/Bents	1.00	1.00		1.00			
Items	Backwalls	1.00	1.00		1.00			
	Wingwalls	1.00	1		1.00			
	Slope Protection	1.00			1.00			

The Ohio State University

	_	(OBCI _{min}		OB	CI _{current}	
Components	Elements	Element	Comp.	Bridge	Element	Comp.	Bridge
	Approach Wearing Surface	1.00			1.00		
Approach Items	Approach Slabs	0.56	0.70		0.32	0.53	
	Embankment	1.00			1.00]	
	Guardrail				1.00		
	Floor/Slab	1.00			0.97		
	Edge of Floor/Slab	1.00			0.88	0.98	
Deck Items	Wearing Surface	1.00	1.00		1.00		
	Railing	1.00			1.00		
	Expansion Joint	1.00			1.00		
	Beams/Girders	0.98			0.98	0.83	0.80
	Diaphragm/X-Frames	0.84	0.00	0.85	0.84		
Superstructure Items	Bearing Devices	0.59	0.86		0.59		
	Prot. Coating System	1.00			0.78		
	Abutment Walls	1.00			1.00		1
	Pier Walls	1.00			1.00	0.73	
Substructure Items	Pier Caps	1.00	0.73		1.00		
	Backwalls	0.13			0.13		
	Slope Protection	1.00			1.00		

Components	Elements	OBCI _{min}			<i>OBCI_{current}</i>			
		Element	Comp.	Bridge	Element	Comp.	Bridge	
Approach Items	Approach Wearing Surface	1.00	1.00		1.00	1.00		
	Embankment	1.00	1.00		1.00			
	General	0.79		0.84	0.73	0.85		
	Alignment	1.00			1.00			
Culvert Items	Shape	1.00	0.89		1.00		0.79	
Cuivert items	Seams	0.49	0.89	0.64	0.49		0.75	
	Headwall/Endwall	1.00			0.50			
	Scour	1.00			1.00			
	Alignment	1.00			1.00			
	Protection	1.00	1.00		1.00	1.00		
	Hydraulic Opening	1.00			1.00			

THE OHIO STATE UNIVERSITY

	Elements	OBCI _{min}			OBCI _{current}		
Components		Element	Comp.	Bridge	Element	Comp.	Bridge
Approach Items	Approach Wearing Surface	1.00			1.00	0.96	0.97
	Approach Slabs	1.00	1.00		0.93		
	Embankment	1.00			1.00		
	Guardrail	1.00			1.00		
Deck Items	Floor/Slab	1.00			0.99	0.98	
	Wearing Surface	1.00	1.00		0.998		
	Railing	1.00			0.86		
	Drainage	1.00			1.00		
	Expansion Joint	1.00			1.00		
Superstructure Items	Beams/Girders	1.00		0.99	0.96	0.997	
	Bearing Devices	1.00	1.00		1.00		
Substructure Items	Abutment Walls	1.00			0.97	0.94	
	Pier Walls	1.00	0.96		0.97		
	Pier Caps	0.94			0.92		
	Wingwalls	1.00			1.00		
Sign Items	Utilities	1.00	1.00		1.00	1.00	

- OBCI is also applied for an optimal budget allocation project for a network consisting of the eight case study bridges.
- A numerical algorithm with:
 - The objective of maximizing network-level OBCI after performing an MR&R work plan.
 - $\circ~$ In the presence of budget limitation.

$$\max \sum_{B=1}^{M_n^*} \sum_{j=1}^{2^{M_B^*}} (AC_{B,j} + UC_{B,j}) \times x_{B,j}$$
$$\begin{cases} \sum_{B=1}^{M_n^*} \sum_{j=1}^{2^{M_B^*}} AC_{B,j} \times x_{B,j} \leq Budget \\ x_{B,j} \in \{0,1\} \\ \sum_{j=1}^{2^{M_B^*}} x_{B,j} = 1 \text{ for each } B = 1 \dots M_n^* \end{cases}$$

THE OHIO STATE UNIVERSITY

Current progress and future applications

Inventory Bridge No	Required money to improve all elements above min thresholds		Recommended actions for	Before optimal work plan		After optimal work plan	
Bridge No.	Value	Percentag e	bridge components	Current	Min	Current	Min
Bridge 1	0	0.00	$^{0}_{\mathrm{Appr}}, \mathrm{C}^{0}_{\mathrm{Deck}}, \mathrm{C}^{0}_{\mathrm{Supr}}, \mathrm{C}^{0}_{\mathrm{Subs}}, \mathrm{C}^{0}_{\mathrm{Chanl}}, \mathrm{C}^{0}_{\mathrm{Sign}}$	0.89	0.95	0.89	0.95
Bridge 2	0	0.00	$C^0_{Appr}, C^{min}_{Deck}, C^0_{Supr}, C^{min}_{Subs}, C^0_{Chanl}$	0.76	0.89	0.76	0.89
Bridge 3	21,845	5.36	$C^0_{Appr}, C^{min}_{Deck}, C^0_{Supr}, C^{min}_{Subs}, C^0_{Sign}$	0.81	0.99	0.82	1.00
Bridge 4	118,853	29.17	$C^0_{Appr}, C^{min}_{Deck}, C^{min}_{Supr}, C^{min}_{Subs}, C^{like-new}_{Sign}$	0.88	0.96	0.92	1.00
Bridge 5	43,364	10.64	$C_{\text{Deck}}^{\min}, C_{\text{Supr}}^{0}, C_{\text{Subs}}^{0}$	0.84	0.98	0.85	0.99
Bridge 6	223,352	54.82	$C^0_{Appr}, C^0_{Deck}, C^{min}_{Supr}, C^0_{Subs}$	0.79	0.86	0.85	0.93
Bridge 7	0	0.00	$C^0_{Appr}, C^0_{Culvert}, C^0_{Chanl}$	0.79	0.85	0.79	0.85
Bridge 8	0	0.00	$C^0_{Appr}, C^0_{Deck}, C^0_{Supr}, C^0_{Subs}, C^0_{Sign}$	0.95	0.99	0.95	0.99
Sum of Bridges	407,415	100	-	0.854	0.966	0.872	0.986

Budget Limit of \$400,000-\$410,000

Note: Appr=Approach component, Deck=Deck component, Supr=Superstructure component, Subs=Substructure component, Chanl=Channel component, Sign=Sign component.

• As a future step, OBCI can be combined with Weibull-Markovian processes to assist agencies with long-term preservation decision-making.