Considerations in Preparing Strategy Options for Deteriorating and Ageing Bridges

Brian Finegan
Outline

• Background
• What is a Preservation Strategy
• Rooney Bridge Case Study
• Development of Preservation Strategies
• Key Messages
• Conclusions
Background

- Diverse range of infrastructure assets
- Increasing level of new infrastructure
- Increasing pressure is being exerted to ensure assets are safe and reliable
- Budgets for capital and operational costs are increasing but are still limited
- New assets are also being created which will add to the future budget required for infrastructure maintenance
- Maintenance budgets for bridges up to $550M per annum in 2015/16
- Bridge Maintenance backlog rising: >$100M (WA, 2012)
What is a Preservation Strategy?

- Balance of required service levels and maintenance budgets
- Pressure is being exerted on existing assets (and asset managers) to exceed the original design life
- Increased focus required to prioritise maintenance: strategic approach to move away from condition to functionality
- Preservation Strategies becoming increasingly significant
- Objective: to employ cost effective treatments at appropriate time to maximise useful life
- Challenge: TMR manage approx. 3,000 bridges (circa 1960-70)
Case Study – Rooney Bridge

- Located on key residential and commercial route from Ring Road to Townsville CBD
- Rooney’s Bridge – 16 span (200 metres long), steel and concrete construction
- Constructed 1950, major refurbishment in 1976 and 2002
- Level 2 Inspection (2016) – Poor condition assessment:
 - protective coating failure and significant corrosion
 - severe cracking, spalling, reinforcement corrosion
Rooney Bridge – Steelwork Condition

- Corrosion was identified in the steel girders, bearings, and headstocks
- Steel girders – onset of corrosion observed but good overall condition
- Steel headstock – corrosion concentrated at the ends of the headstock and section loss of the stiffeners
- Steel bearings – Significant levels of corrosion at expansion joint bearings: leaking water main
Rooney Bridge - RC piles

- Cracking and spalling
- Exposed corroding reinforcement
- Previous history of similar issues:
 - pile encasements
 - crack injection
- Saltwater environment
- Underwater inspection
Rooney Bridge - Preservation Strategies

- Historic deterioration rates
- Structural assessment identified critical components
 - Girders have sufficient capacity
 - Corrosion of ends headstocks not part of direct load path from the superstructure
 - Piles: sufficient for vertical loads; sensitive to corrosion losses in bending
- Corrosion reinforcement at headstock connection potential to compromise pile integrity
- The most severe cases of corrosion were found to coincide with water leakages
Rooney Bridge – TMR Objectives

- Planned further development in area:
 - residential
 - commercial
- Increased traffic volumes – route upgrade
- Reported in poor condition:
 - full re-paint
 - pile encasement
- Understand potential options:
 - replace as part of upgrade
 - retain within upgrade and replace at later date
Rooney Bridge - Preservation Strategies

- Short-term (5 year) preservation strategy
 - replace bridge in future upgrade
 - minimal capital expenditure
 - inspection & monitoring focus
 - heavy vehicle management
Rooney Bridge - Preservation Strategies

- Long Term (20 year) preservation strategy
 - retain bridge in future upgrade, replace after 20 years
 - deterioration predictions
 - decisions based on functionality rather than reported condition
 - defect prioritisation
 - targeted maintenance focus
 - two large scale interventions, to reinstate condition-poor critical elements and then other elements
Rooney Bridge – Multi Criteria Analysis

- **Purpose:** to establish the optimum maintenance solution
- **Comparative assessment across a number of criteria:**
 - Potential life of repair
 - Need for any ongoing works
 - Relative cost
 - Environmental issues
 - Constructability
 - Reliability of repair
 - Effect on level of service

- **Various options for superstructure and substructure considered**

<table>
<thead>
<tr>
<th>Description</th>
<th>Rating</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do Nothing</td>
<td>40%</td>
<td>4</td>
</tr>
<tr>
<td>Full blast and re-paint</td>
<td>66%</td>
<td>2</td>
</tr>
<tr>
<td>Blast and re-paint steel girders</td>
<td>62%</td>
<td>3</td>
</tr>
<tr>
<td>Targeted blast and re-paint at piers</td>
<td>72%</td>
<td>1</td>
</tr>
<tr>
<td>Clean and over-paint existing (all steel)</td>
<td>35%</td>
<td>6</td>
</tr>
<tr>
<td>Targeted clean and over-paint</td>
<td>39%</td>
<td>5</td>
</tr>
<tr>
<td>Do Nothing</td>
<td>42%</td>
<td>5</td>
</tr>
<tr>
<td>Pile Encasements</td>
<td>62%</td>
<td>2</td>
</tr>
<tr>
<td>Crack Injection</td>
<td>40%</td>
<td>6</td>
</tr>
<tr>
<td>Concrete Repairs</td>
<td>68%</td>
<td>1</td>
</tr>
<tr>
<td>Cathodic Protection</td>
<td>57%</td>
<td>3</td>
</tr>
<tr>
<td>Silane Treatment</td>
<td>45%</td>
<td>4</td>
</tr>
<tr>
<td>Full blast and re-paint</td>
<td>66%</td>
<td>2</td>
</tr>
<tr>
<td>Blast and re-paint steel girders</td>
<td>62%</td>
<td>3</td>
</tr>
<tr>
<td>Targeted blast and re-paint at piers</td>
<td>72%</td>
<td>1</td>
</tr>
<tr>
<td>Clean and over-paint existing (all steel)</td>
<td>35%</td>
<td>6</td>
</tr>
<tr>
<td>Targeted clean and over-paint</td>
<td>39%</td>
<td>5</td>
</tr>
</tbody>
</table>
As an asset owner, what do you need to know?
- Route and network priorities
- OPEX budget
- How to maintain asset at current level of service
- Required service life

As an asset owner, what information do you need to answer this?
- Accurate historical data
- Condition: current and projected
- Current level of service
- Environmental factors, i.e. durability
- Deterioration rates
- Function of asset
- Load capacity
- Higher risk components
Key Messages

- Understand the significance of condition on level of service
- Optimisation of budget against priorities
- Prioritisation to inform repair recommendations
- Know the critical components
- Establish the required service life
- Know the structure, risks and constraints
- Use engineering judgement
Conclusions

- A wide variety of strategies can be used for the design and management of assets
- For new assets, balance of CAPEX and OPEX needs to be considered
- For existing assets, maintenance costs need to be optimised against priorities
- Understand impact of deterioration on structural capacity
- Understand what defects can lead to a decrease in levels of service
- Optimise extent of future intervention
Thank you on behalf of Dr. Torill Pape (AECOM) and Dr. Shunqing Cai (TMR)