Exploring the benefits of molecular testing for gonorrhoea antibiotic resistance surveillance in remote settings

Ben Hui, Nathan Ryder, Jiunn-Yih Su, James Ward, Marcus Chen, Basil Donovan, Christopher Fairley, Rebecca Guy, Monica Lahra, Matthew Law, David Whiley, David Regan
On behalf of GRAND investigator team

Gonorrhoea in remote Australia
• Disproportionately high diagnostic rate
 • 35 times higher than in urban setting
• Prevalence up to 8% among 16-34 age group
 • More than 10% for 16-19 age group
• High community screening coverage (70%+)
• High treatment rate (75%+)

Gonorrhoea antimicrobial resistance (AMR)

<table>
<thead>
<tr>
<th>Region</th>
<th>Number of isolates tested</th>
<th>Resistance to penicillin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number</td>
<td>%</td>
</tr>
<tr>
<td>Australia (urban)</td>
<td>3647</td>
<td>1034</td>
</tr>
<tr>
<td>Australia (remote)</td>
<td>459</td>
<td>19</td>
</tr>
<tr>
<td>Western pacific region</td>
<td>8484</td>
<td>3013</td>
</tr>
</tbody>
</table>

Source: Lahra et al. 2013

Molecular test for AMR surveillance
• In NHMRC funded GRAND study, David Whiley and colleagues have been developing molecular PCR tests to identify genetic mutations that confer resistance
• Improve coverage and representativeness of AMR surveillance
• Inform clinical guidelines

Detecting and treating gonorrhoea
• Recommended treatment (www.sti.guidelines.org.au)
 • Principal treatment option: ceftriaxone + azithromycin
 • For regional/remote: amoxycillin (+ azithromycin when chlamydia not excluded)
• Diagnosis
 • Majority through nucleic acid amplification tests (NAAT) test, due to distance and transport consideration, convenience and high sensitivity
 • Not many samples available for culture, which is needed to test antibiotic susceptibility

Modelling
• We developed an individual-based mathematical model to describe the transmission of gonorrhoea in a remote Indigenous population in Australia
• Estimated the impact of the molecular test on the time delay between first occurrence and the first confirmation that the prevalence of gonorrhoea AMR has breached the WHO-recommended 5% threshold
AMR monitoring scheme

- Resistance proportion: the percentage of infection in the population that is attributable to treatment-resistant gonorrhoea

- An alert is triggered when more than 5% of the last 200 positive diagnoses (for which AMR is determined) are resistant to treatment

Outputs

- The resistance proportion in the population when the alert is triggered

- The delay between the time when the actual resistance proportion in the population breaches the 5% threshold and time when the breached detected the surveillance system (i.e. triggering of the alert).

Example

![Chart showing resistance proportion over time](chart1.png)

Example – insufficient sample size

![Chart showing resistance proportion over time with small sample size](chart2.png)

AMR surveillance – without molecular test

<table>
<thead>
<tr>
<th>Percentage of diagnoses where AMR can be detected</th>
<th>17% (WA)</th>
<th>22% (NT)</th>
<th>30% in male, 50% in Female (FNQ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistance proportion at the time alert is triggered</td>
<td>17.8%</td>
<td>12.5%</td>
<td>8.2%</td>
</tr>
<tr>
<td>Time between first instance of resistance proportion exceeding 5% and time of alert</td>
<td>36.5 months</td>
<td>26.2 months</td>
<td>11.7 months</td>
</tr>
</tbody>
</table>

AMR surveillance – with molecular test

<table>
<thead>
<tr>
<th>Percentage of diagnoses where AMR can be detected</th>
<th>50%</th>
<th>75%</th>
<th>100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistance proportion at the time alert is triggered</td>
<td>6.8%</td>
<td>6.2%</td>
<td>5.8%</td>
</tr>
<tr>
<td>Time between first instance of resistance proportion exceeding 5% and time of alert (months)</td>
<td>6.0 months</td>
<td>4.2 months</td>
<td>3.4 months</td>
</tr>
</tbody>
</table>
Findings

• AMR surveillance would be enhanced by the use of a molecular resistance test at diagnosis by enabling more timely detection of resistance

• This could facilitate earlier treatment switching, which has the potential to reduce the population impact of gonorrhoea AMR

• With increased number of sample available for AMR surveillance, adjustment to AMR monitoring scheme might be required to prevent premature triggering of the alert.

Disclosure of Interest

This work was supported by NHMRC-funded GRAND Study (APP1025517). The National Neisseria Network is funded by the Australian Government Department of Health. The Kirby Institute is funded by the Australian Government Department of Health and Ageing and is affiliated with the Faculty of Medicine, UNSW Australia. The views expressed in this publication do not necessarily represent the position of the Australian Government.

References

