

Operating Plants – Data Sources for Consideration in Long Term Operation

Jerry Head Chicago, IL June, 2016

Long Term Operation – Beyond 60 Years

- LTO in the US has multiple constraints
- Safety there must be no degradation in safety performance
- Regulatory must meet the ever expanding requirements of NRC
- Reliability plant reliability/availability must remain high
- Economics plant must be economical to operate

How do we identify Systems, Structures, and Components important to LTO?

Key US Performance Indicators

Key U.S. Performance Indicators

- Licensee Event Reports (LERs)
- Inspection Reports (IRs)

- Performance Monitoring
- Industry Trends & Analysis
- Event Reports

• Focus on Safety

Focus on Safety & Reliability

Regulatory Indicators

NRC Indicators Focus on Safety

- United States Nuclear Regulatory Commission Protecting People and the Environment
- ROP, LERs and Inspection Reports often contain redundant information (same events show up in all)
- Reviewed Five years of LER data (2011-2015)
- Many LERs were the result of SCRAMS
- Others were required reports due to safety equipment failure/unavailability
- However, unavailability due to non-safety related equipment problems may not show up

6

Word Cloud from LER Titles

These datasets provide limited insights for Long Term Operation

Generic Aging Lessons Learned

United States Nuclear Regularing Commis Protecting People and the Environm	NUREG-1801, Rev. 2
Generic Aging Learned (GAL	g Lessons L) Report
Final Report	
Off	ice of Nuclear Reactor Regulation

Table of Contents

I. Application of ASME Code (via 10CFR50.55a, as amended)

II. Containment Structures

III. Structures and Component Supports

IV. Reactor Vessel, Internals, and Reactor Coolant System

V. Engineered Safety Features

VI. Electrical Components

VII. Auxiliary Systems

VIII. Steam and Power Conversion System

IX. Selected Definitions and Use of Terms for

Structures, Components, Materials, Environments,

Aging Effects, and Aging Mechanisms

X. Time-Limited Aging Analyses [Evaluation of

Aging Management Programs under 10 CFR 54.21(c)(1)(iii)]

XI. Aging Management Programs (AMPs)

Key focus is on safety related systems, structures, and components

8

Conclusions

- Regulatory Performance Indicators are narrow in scope (may miss many components that will be important to Long Term Operation)
- GALL contains good insights into "generic" aging mechanisms, although application may need to be broader

9

Industry Indicators INPO Scram Trend Analysis

Institute of Nuclear Power Operations

Scram Trends

John Loyd – INPO Industry Analysis (770) 644-8155 Iovelie @indo.org Last update – 04/21/2016

© 2016 Institute of Nuclear Power Operations

Scram Overview

- Turbine/Generator 28%
- FW/Condensate 24%
- TSG- 14%

Other Industry Data Sources

- INPO, EPRI, NEI
- BWROG, PWROG Scram Frequency Reduction
 Committees
- Equipment Reliability Working Group
- Preventive Maintenance Coordination Group
- AC Power Source Reliability
- Don't forget international sources (IAEA, WANO, etc.)

Conclusions

- Identification of SSC's important to LTO is a critical first step
- Industry Performance Indicators are more detailed in scope than NRC and probably cover SSC's of concern
- GALL may provide good basis for aging management programs beyond SSC's of NRC interest (and its use will be required for license renewal)
- Solutions to extending life of SSC's can usually be international → charter of CORDEL Working Group

Questions?

