



### "Big data"

- Electronic medical records have revolutionized the ability to perform observational studies.
- Relatively efficient and fast queries of medical information
- Databases can have breadth and/or depth of information
- Cannot establish cause-and-effect relationships with retrospective data, but large databases can be used to study descriptive statistics, predictive capacity, and/or casual inferences.

KAISER PERMANENTE.

### Different sources of "big data"

- Kaiser Permanente (KP)
- American Academy of Ophthalmology's Intelligent Research in Sight (IRIS) Registry
- MarketScan Database
- Medicare claims data
- Vestrum
- National Health and Nutrition Examination Survey (NHANES)

KAISER PERMANENTE.

### What makes KP "big data" unique

- Length of data collection
  - High patient retention
  - Diverse patient population
  - 100 million person-years with electronic medical data are available for research from 1981 to 2017
- Combination of systemic and ocular data
- Pharmacy dispensing database
- "Potential" access to ophthalmic images

MAISER PERMANENTE.

### What are potential pitfalls of KP data?

- Accuracy of billing
- Vision and IOP data can be hard to extract
  - Laterality of procedures/interventions/medications difficult to discern

🚧 Kaiser Permanente.

### Limitations of "big data" in general

- Variable data quality
- Risk of patient lost to follow-up/transfer of care
- "Exaggerated" statistical significance
  - Large n's can make statistical significance "easy" to find  $\rightarrow$  small and potentially practically meaningless differences may be statistically significant
- Confounding
- Appropriate reporting

### What have we studied using KPSC "big data"

- Cataract
- Myopia
- Age related macular degeneration (AMD)
- Plaquenil toxicity
- Glaucoma
- Diabetic retinopathy (DR)

MAISER PERMANENTE.

KAISER PERMANENTE.

### Pre-operative vision and surgeon volume as predictors of visual outcomes following cataract surgery

- Purpose
- Evaluate the relationship between pre-operative vision and surgeon volume with visual outcomes following cataract surgery Methods

  - Retrospective cohort study of patients > 18 years enrolled in KPSC health plan and who underwent cataract surgery Conducted multivariate analysis to determine relationship between surgeon volume and post-op visual acuity, controlling for patient age, pre-op visual acuity, history of diabetes, and history of diabetic retinopathy
- Results
  - Patients whose surgeons performed more surgeries gained significantly more letters, but the difference between the lowest and highest volume groups was ~1.25 letters.

KAISER PERMANENTE.



The

KAISER PERMANENTE.

Preoperative Topical Nonsteroidal Anti-inflammatory Drugs for Macular Edema Prophylaxis Following Cataract Surgery

### Study Objective

Describe the effect of routine use of topical NSAIDs on the incidence of post-op macular edema after cataract surgery

- Methods
  - Retrospective matched cohort study of patients who underwent cataract surgery between Jan. 2007 Jun. 2014
  - Patients who had a perioperative prescription of topical NSAIDs filled in addition to topical steroids were compared to patients taking topical steroids only

KAISER PERMANENTE.



| David 1: France, MD, MHT - Schweid, Nathenkerden, C. S. Disserver, M. S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1743 and 156 is these are perventisely public means backing and the state of the |

## Public Health Burden and Potential Interventions for Myopia

## Key Points

16

- $-\,$  Currently, ~1.4 billion people (23%) in the world are myopic
- By 2050, ~4.8 billion people (50%) expected to have myopia
- Efforts to reduce the prevalence, progression, and severity of myopia could have a profound public health impact
- Strategies for preventing myopia include orthokeratology and low-dose atropine
- Another strategy for consideration is increasing outdoor time

<page-header><page-header><section-header><section-header><text><text><text><text><text><text><text>

### Myopia Prevalence and Risk Factors in Children



- Objective
  - Evaluate the prevalence of and risk factors for pediatric myopia

KAISER PERMANENTE.

in Kaiser Permanente.

| Variables, N (%)                                        | No Myopia<br>35,326 (58) | Myopia<br>25,453 (42) | P-value |
|---------------------------------------------------------|--------------------------|-----------------------|---------|
| Age at eye exam                                         |                          |                       | <0.00   |
| 5 to < 8 years                                          | 8929 (25)                | 1548 (6)              |         |
| 8 to <11 years                                          | 9610 (27)                | 4661 (18)             |         |
| 11 to <14 years                                         | 8132 (23)                | 7941 (31)             |         |
| 14 to <17 years                                         | 7486 (21)                | 9633 (38)             |         |
| 17 to <20 years                                         | 1169 (3)                 | 1680 (7)              |         |
| Female                                                  | 19032 (54)               | 13756 (54)            | 0.72    |
| Race                                                    |                          |                       | <0.00   |
| White                                                   | 14567 (41)               | 8337 (33)             |         |
| African American                                        | 3740(11)                 | 2362 (9)              |         |
| Asian/Pacific Islander                                  | 3000 (8)                 | 4570 (18)             |         |
| Other/Multiple/Unknown                                  | 14019 (40)               | 10194 (40)            |         |
| Hispanic                                                | 20453 (58)               | 13768 (54)            |         |
| Neighborhood household income (USD)                     |                          |                       | <0.00   |
| Less than \$25,000                                      | 710 (3)                  | 568 (3)               |         |
| \$25,000 - \$49,999                                     | 9328 (33)                | 6445 (31)             |         |
| \$50,000 - \$99,999                                     | 14896 (53)               | 11001 (53)            |         |
| \$100,000 or Higher                                     | 3018(11)                 | 2705 (13)             |         |
| Body mass index percentile for age and sex <sup>a</sup> |                          |                       | 0.7     |
| Normal or under weight (<85 <sup>n</sup> )              | 20367 (60)               | 14238 (60)            |         |
| Overweight (85 <sup>th</sup> to <95 <sup>th</sup> )     | 6112(18)                 | 4340 (18)             |         |
| Moderately obese (95 <sup>th</sup> to 1.2 x 95th)       | 6634 (20)                | 4394 (19)             |         |
| Extremely obese (21.2 x 95 <sup>n</sup> )               | 630 (2)                  | 718 (3)               |         |
| Exercise per day                                        |                          |                       | <0.00   |
| Less than 60 minutes                                    | 14685 (60)               | 11114 (65)            |         |
| At least 60 minutes                                     | 9957 (40)                | 5986 (35)             |         |

# Myopia Prevalence and Risk Factors in Children







| Variables                   | Adjusted OR<br>(95% CI)         | Variables                                 | Adjusted OR<br>(95% CI) |
|-----------------------------|---------------------------------|-------------------------------------------|-------------------------|
| Race                        |                                 | Neighborhood household<br>income (in USD) |                         |
| White                       | Reference                       | < \$25,000                                | Reference               |
| African American            | 1.08 (1.03 – 1.13)              | \$25,000 to < \$50,000                    | 0.90 (0.83 - 0.97)      |
| Asian/Pacific Islander      | <mark>1.64 (1.58 – 1.70)</mark> | \$50,000 to < \$100,000                   | 0.93 (0.86 - 1.01)      |
| Other/Multiple/Unknown      | <mark>1.18 (1.14 – 1.22)</mark> | \$100,000 or higher                       | 1.03 (0.94 - 1.12)      |
| Hispanic (vs. Not Hispanic) | 0.99 (0.96 - 1.03)              | Exercise per day                          |                         |
| Female (vs. Male)           | 1.00 (0.97 - 1.02)              | Less than 60 minutes                      | Reference               |
|                             |                                 | At least 60 minutes                       | 0.87 (0.85 - 0.89)      |
|                             |                                 | A load of minutes                         | 0.00 (0.00 - 0.00)      |

# Effect of IOP-Lowering Glaucoma Medications in Patients with Exudative AMD

# Study Objective: Determine if intr

 Determine if intraocular pressure (IOP)-lowering glaucoma medications reduce the need for anti-VEGF injections in patients with exudative AMD

#### Methods

22

- Retrospective, matched cohort of patients with exudative AMD and who received anti-VEGF injection(s) in 2010-2015
- Used medication dispenses to assess whether patient was prescribed an IOP-lowering medication
- Data on visual acuity, IOP, and number of anti-VEGF injections were abstracted from patient charts

KAISER PERMANENTE.

|                                                                                                                                                                                                             | Medication Non-Users<br>(N=127)                                      | Medication Users<br>(N=127)            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------|
| Baseline IOP<br>Mean (SD)<br>Median (IQR)                                                                                                                                                                   | 15.1 (3.6)<br>15 (13, 18)                                            | 15.6 (4.4)<br>15 (12, 18)              |
| Switched anti-VEGF agents, N (%)                                                                                                                                                                            | 22 (17%)                                                             | 29 (23%)                               |
| No. injections with bevacizumab before switch<br>Mean (SD)<br>Median (IQR)                                                                                                                                  | 4.4 (2.0)<br>4 (3, 7)                                                | 4.8 (1.7)<br>4 (4, 5)                  |
| Total no. injections<br>Mean (SD)<br>Median (IQR)                                                                                                                                                           | 6.2 (3.0)<br>6 (4, 8)                                                | 6.2 (2.8)<br>6 (4, 8)                  |
| <ul> <li>Number of anti-VEGF injections were similar<br/>users among exudative AMD patients.</li> <li>Additional studies may be needed to assess<br/>associated with decreased number of anti-VE</li> </ul> | between glaucoma medic<br>whether use of glaucoma<br>EGF injections. | ation users vs. non-<br>medications is |



### Effect of IOP-Lowering Glaucoma Medications in Patients with Exudative AMD











### Coding Patterns by Ophthalmologists for Hydroxychloroquine Toxicity

- Paper currently in press
- Study Objective:
  - Characterize the ICD-9 coding patterns used by ophthalmologists in clinical practice for hydroxychloroquine (HCQ) retinal toxicity

Methods

- Retrospective cohort study of patients enrolled in KPSC health plan who were dispensed HCQ between 2001-2014
- Patients' were identified by ICD-9 codes for toxic maculopathy, non-exudative AMD, Drusen (degenerative), and/or (other) background retinopathy
- The charts of these patients were manually reviewed to validate the diagnosis

KAISER PERMANENTE

### Coding Patterns by Ophthalmologists for Hydroxychloroquine Toxicity

- Results
  - 23,362 patients were dispense HCQ between 2001-2014
  - 678 (2.9%) patients were diagnosed with at least one of the aforementioned ICD codes
  - Only 53 patients were confirmed to have HCQ toxicity on chart review
- Discussion

31

- Study underscores the imprecise nature of ICD coding
- Future work can focus on uniform coding standards among clinicians, particularly for rare conditions
- Study illustrates the limitations of relying on ICD codes only when conducting research utilizing electronic databases

🚧 Kaiser Permanente.

### Two-Year Incidence of Retinal Intervention in Patients with Minimal or No Diabetic Retinopathy

- Presented as an abstract at AAO 2017
- Study Objective
  - Determine the two-year incidence of retinal intervention in patients with minimal or no diabetic retinopathy

Methods

- Retrospective chart review of patients who had non-widefield DR screening photographs
   Patients were identified by CPT codes for vitrectomy, intravitreal injections, and retinal
- lasers – Chart review was performed to validate procedures

KAISER PERMANENTE.

| Retinal Intervention<br>Introvitreal Injection<br>Anti-VEOF for branch retinal visin occlusion with macular edema<br>Anti-VEOF for monical redoma<br>Anti-VEOF for monical redoma<br>Anti-VEOF for monical redoma                | DED-<br>Related<br>2<br>0<br>2                           | Not DED-<br>Related             | DED-<br>Related | Not DED-<br>Related                       | Total                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------|-----------------|-------------------------------------------|------------------------------------------|
| Intravitreal Injection<br>Anti-VECF for branch retinal vein occlusion with macular edema<br>Anti-VECF for macular edema<br>Anti-VECF for non-clearing vitreous hemorrhage<br>Ocriptamin for macular hole                         | 2<br>0<br>0<br>2                                         | 0                               | 1               | 2                                         | 5                                        |
| Anti-VEGF for branch retinal vein occlusion with macular edema<br>Anti-VEGF for macular edema<br>Anti-VEGF for non-clearing vitreous hemorrhage<br>Ocriptasmin for macular hole                                                  | 0<br>0<br>2                                              | 0                               |                 |                                           | _                                        |
|                                                                                                                                                                                                                                  | 0                                                        | 0                               | 1               | 1<br>0<br>0<br>1                          | 1<br>1<br>2<br>1                         |
| Laser                                                                                                                                                                                                                            | 3                                                        | 4                               | 4               | 2                                         | 13                                       |
| Focal macular laser<br>Pan-retinal photocoagulation<br>Retinopexy                                                                                                                                                                | 1<br>2<br>0                                              | 0<br>1<br>3                     | 1<br>3<br>0     | 0<br>0<br>2                               | 2<br>6<br>5                              |
| Pars Plana Vitrectomy                                                                                                                                                                                                            | 2                                                        | 15                              | 4               | 27                                        | 48                                       |
| CMV retinits / rhogmatogenous retinal detachment<br>Epiction membrane<br>Lymphona<br>Macular hole / epicehain membrane<br>Macular hole / epicehain membrane<br>Melanoma<br>Non-clearing vitrous hemorrhage<br>Posteric soleritis | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>1<br>4<br>1<br>0<br>1<br>8 | 000004000       | 1<br>4<br>0<br>7<br>3<br>1<br>4<br>1<br>4 | 1<br>4<br>11<br>4<br>1<br>11<br>11<br>12 |

| Patients with <u>Minimal Diabetic Retinopathy</u>                                                                                                                                                                                                    |                         |                             |               |                  |             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------|---------------|------------------|-------------|
|                                                                                                                                                                                                                                                      | Year 1<br>DED: Not DED: |                             | Year 2        |                  |             |
| Retinal Intervention                                                                                                                                                                                                                                 | Related                 | Related                     | Related       | Related          | Total       |
| Intravitreal Injection                                                                                                                                                                                                                               | 3                       | 2                           | 1             | 0                | 6           |
| Anti-VEGF for exudative age-related macular degeneration<br>Anti-VEGF for macular edema                                                                                                                                                              | 0<br>3                  | 1                           | 1<br>0        | 0                | 2           |
| Laser                                                                                                                                                                                                                                                | 5                       | 1                           | 2             | 0                | 8           |
| Focal macular laser<br>Pan-retinal photocoagulation<br>Retinguexy                                                                                                                                                                                    | 0<br>5<br>0             | 0<br>0<br>1                 | 1<br>1<br>0   | 0                | 1<br>1<br>1 |
| Pars Plana Vitrectomy                                                                                                                                                                                                                                | 2                       | 2                           | 0             | 1                | 5           |
| Epiretinal membrane<br>Non-dearing vitreous hemorrhage<br>Rhegmatogenous retinal detachment<br>Tractional retinal detachment                                                                                                                         | 0<br>1<br>0<br>1        | 1<br>0<br>1<br>0            | 0<br>0<br>0   | 1<br>0<br>0<br>0 | 1<br>1<br>1 |
| DED = diabetic eye disease; VEGF = vascular endothelial growth factor<br>11 patients required intervention for DED during first 2 years; 1 patient req<br>Injection.<br>5 patients required intervention for non-DED during first 2 years; 1 patient | uired both PF           | V and Laser,<br>PPV and Las | 1 patient req | uired both Las   | erand       |





## A Model to Predict the 3-Year Risk of Needing Treatment for Diabetic Macular Edema

- Presented at ASRS 2018
- Study Objective
  - Predict who will develop DME
- Methods

37

- Retrospective cohort of patients from the Diabetes Case Identification Database who were: ≥18 years of age, ≥3 years of follow-up, no prior history of DME, no severe DR on baseline retinal photos
- Outcomes: (1) diagnosis of DME, (2) diagnosis of DME with anti-VEGF injection
- Employed a Cox proportional hazard model to calculate DME risk
- Used model-fitted values to set thresholds for risk calculator

🚧 Kaiser Permanente.





### A Model to Predict the 3-Year Risk of Needing Treatment for Diabetic Macular Edema

#### Conclusions

- Further modeling can be done to explore additional risk factors and add more granular detail
- » Time-dependent variables / repeated measures were not used in this model
- Risk stratification could be integrated into electronic medical records
   High risk patients may benefit from more intense systemic management and closer ophthalmic monitoring

KAISER PERMANENTE.