

A functional and structural connectivity view of switching dynamics in aging

Pauline Baniqued

Beckman Institute & Department of Psychology

Approach

Control processes involve brain networks

functional phenomena in grey matter structural changes in white matter

Age-related changes in behavioral control and brain structure

Why is this important?

Everyday we switch between tasks

several paradigms to study task-switching

Switching experiment

Why is this important?

Everyday we switch between tasks

There are **costs** to switching

- More errors, slower responses
- Even when given time to prepare

There is evidence we can be more efficient

- given cue, optimize preparatory period
- recruitment of frontal and parietal regions

Fronto-parietal "network"

Coactivation led to FPN"network"
Important for controlling attention in a wide array of tasks

How do these FPN-dependent control processes interact with regions that carry out the task?

Corbetta & Shulman, 2002; Hopfinger, Buonocore, Mangun, 2000; Weissman, Warner, Woldorff, 2004; Gratton, Low, & Fabiani, 2008; Baniqued, Low, Fabiani & Gratton, 2013

Spatiotemporal dynamics of preparation

Lagged cross-correlations

- "functional connectivity" with timing info
- LAGS, relative order of activation
- Can detect patterns of activity with different onsets

Event-related optical signal (EROS)

Gratton & Fabiani, 2010

- Measures changes in optical scattering in neural tissue (active vs. rest)
- Reaches ~3cm below scalp
- Spatial resolution ~5 mm
- Temporal resolution ~10 ms
- event-related potentials (ERPs), which measure scalp voltage changes due to neural activity

Modality Switching Experiment

YOUNG ADULTS, N=15, 4 runs of 20 blocks with 24 trials each

Greater Frontal & Parietal Activity for Switch vs Repeat Trials

Switch-related frontal activity predicts task-specific downregulation and upregulation

Baniqued, Low, Fabiani & Gratton, 2013

Switch-related frontal activity predicts task-specific downregulation and upregulation

Baniqued, Low, Fabiani & Gratton, 2013

Switch-related frontal activity predicts task-specific downregulation and upregulation

Baniqued, Low, Fabiani & Gratton, 2013

Part 1 Summary: Connectivity in young adults

- Connectivity between frontal control areas and taskspecific regions (e.g., motor areas) is important for preparation, especially in more demanding switch trials
- Frontal activity predicted downregulation of taskirrelevant processes then upregulation of task-relevant processes
- QUESTION: What happens in older age, when frontal and parietal areas undergo age-related decline?

Spatial Stroop: Switching task sensitive to age, highly involves frontal regions

Spatial Stroop Switching task

Switch-related frontal negativity, important for behavior?

Switch-related activation in **left frontal cortex** during preparatory period predicts smaller switch costs

ERP: greater F3 negativity, smaller costs

Switch-related activation in **left MFG** during preparatory period predicts smaller switch costs

ERP: greater F3 negativity, smaller costs

EROS

Cross-correlations: Left middle frontal gyrus predicts task-specific activations

Larger switch costs, reduced switch modulation in frontal areas in older adults

Anterior corpus callosum shrinks with age

Overall, larger switch costs for those with smaller CC, especially in right-hemisphere dependent position task.

Large CC group: more lateralized switch

modulation

White matter matters for grey(ing) areas

- Grey areas: Functional connectivity between frontal control areas and task-specific regions is important in attention-demanding tasks
- White matter matters: In older adults, difficulty engaging preparatory control due to weaker structural connections may lead to sub-optimal performance

Work in progress

- Probe EROS-behavioral relationships
- Investigate cross-correlation (functional) differences as a function of corpus callosum size (structural)

Target health of frontal white matter with exercise?

Voss et al., 2013

Burzynska et al., In Preparation

Gordon et al., 2008; Johnson et al., 2012; Zimmerman et al., 2014; Tan et al., In Preparation

Acknowledgement

G)

Monica Fabiani
Gabriele Gratton
Kathy Low
Ed Maclin
Mark Fletcher (CC data)
Nils Schneider-Garces

Arthur Kramer
Lifelong Brain and Cognition Lab

NSF Neuroengineering IGERT (PB)
Beckman Graduate Fellowship (PB)
DARPA, ARRA Grants (MF, GG)

Cognitive Neuroimaging Lab

