CE Course Handout

Improving the Effectiveness of Your Local Anesthesia

Thursday, June 9, 2016
2:30-5:30 p.m.
Improving the Effectiveness of Your Local Anesthesia

ADHA 2016

Michele P Carr RDH, MA- carr.3@osu.edu
Rachel C Kearney RDH, MS –kearney.19@osu.edu

Disclaimer

We do not endorse any one product and have no affiliation with any product mentioned in this presentation.

Objectives

At the end of this course, attendees/participants will be able to:

1. Identify factors that influence the effectiveness of local anesthesia
2. Explain ways to reduce patient anxiety and pain
3. Describe how different anesthetic agents may provide a higher success rate
4. Choose appropriate techniques and anesthetics based on evidence

Overview

45/50 states allow dental hygienists to administer local anesthesia (LA)

I. Local Anesthetics Agents
 a. Lidocaine
 b. Mepivacaine
 c. Prilocaine
 d. Bupivacaine
 e. Articaine

II. Factors that Influence LA Effectiveness
 a. Genetics
 i. May play a role in anesthesia failure. Future studies may use genome testing to improve LA efficacy by selecting the most useful agent.
 b. Red hair phenotype and IAN blocks
 i. Red-haired patients may be more difficult to anesthetize.
 c. Age
 i. Studies show elderly patients tolerate pain better than younger patients and elderly patients had a shorter onset time of anesthesia.
d. Patients with alcoholism
 i. Patients with alcoholism who are not in recovery may be more difficult to anesthetize.

III. Allergies and LA
 a. Stoppers
 i. No documented cases of latex allergy from the latex stopper for dental local anesthesia.
 ii. Stoppers are now made of latex free.
 b. Sulfites
 i. If a patient has a severe allergy to sulfites, use an anesthetic solution without a vasoconstrictor.

IV. Anxiety
 a. Anxious patients
 i. Patients with anxiety may be harder to anesthetize
 b. Aromatherapy
 i. Aromatherapy does not improve pain control
 ii. Olfactory influences on mood and autonomic, endocrine and immune function.
 c. Needle Gauge
 i. Needle gauge does not matter in perception of pain.
 ii. Size doesn’t matter: Needle gauge and injection pain associated with transmucosal anesthetic administration.
 iii. Broken Needles
 1. Occurs most in IA with 30 gauge needle and in children who move suddenly
 d. Two stage injection
 i. A two-stage injection may be helpful in reducing pain
 ii. The effects of a 2-stage injection technique on inferior alveolar nerve block injection pain.

V. Alternate Modes of Reducing Pain
 a. Warming the solution
 i. Mixed studies. More research is needed.
 b. Cooling the injection site
 i. Studies look promising but more studies are needed to confirm positive effects of cooling

VI. Local Anesthesia and the Pregnant Patient
a. Considerations for patients who are pregnant

VII. Workplace controls
a. Consideration in workplace controls

VIII. Alternative anesthesia techniques
a. Alternative techniques

IX. Innovations in local anesthesia
a. Reversal agents
 i. Phentolamine mesylate (OraVerse™) is a safe and effective product to help reverse soft tissue anesthesia. Reduces the median time to recovery of normal sensation by 55%-62%.

b. Nasal spray
 i. “Kovacaine mist”-designed to anesthetize the maxillary arch, not circulated in bloodstream therefore less harmful to kidneys, liver and lungs, wears off quicker. No needle=less stress and anxiety.

c. Buffering solution
 i. Buffering local anesthetics does not seem to reduce the pain of injections.
References

Genetics

Red hair

Age

Alcoholism

Latex allergy

Sulfite allergy

Anxiety

Aromatherapy

Needle gauge

Two stage injection

Warming the solution

Cooling the injection site

Maxillary anesthesia

Articaine

Reversal Agents

Nasal Spray

Buffering Solution

Other

Malamed SF. Handbook of Local Anesthesia. 6th ed. 2014 Mosby Inc. St. Louis MO.