Efficient Bridge Deck Inspection and Assessment Framework Utilizing Image-Based Non-destructive Evaluation Methods

Presented by Shuhei Hiasa

Ph.D., Visiting Scholar at University of Central Florida, and Civil Engineer at West Nippon Expressway Company Limited (NEXCO-West)

Co-author :

Dr. F. Necati Catbas, Professor at University of Central Florida

University of Central Florida College of Engineering and Computer Science Department of Civil, Environmental, and Construction Engineering

Ultimate Goal of Our Project: Image-Based SHM

Implementation of efficient & effective bridge inspection by integrating image-based techniques as complementary approach

Scope: local level SHM using IRT & HD system

Infrared thermography (IRT) and High Definition (HD) image technology

IRT: subsurface defects (delamination, voids, etc.)

HD: surface defects (cracks, etc.)

- ➢ Non-contact
- ➢ Wide range of structures at one time
- > High-speed scanning without lane closures

(SHRP2 Report: S2-R06A-PR-1)

Advantage of IRT & HD system: data collection, traffic control, safety, objectivity Accuracy of IRT & HD

- ➢ HD: depends on image quality
- ➢ IRT: Some challenges & uncertainties

Principle of passive Infrared thermography (IRT)

- ➢ Solar radiation heats up the concrete surface
- > Delamination (air) becomes a thermal insulator and prevents heat flow
- \succ Causes temperature difference of concrete surface (Δ T)
- \succ IRT detects subsurface defect from ΔT

(IR cameras read the emitted IR radiation from the concrete surface and convert it to a temperature)

Challenges & uncertainties for IRT application

2) Data collection time

What time is good or bad?

3) Data collection speed & IR camera spec. $^{40 \text{ min aff}}$

40 min after sunrise

About noontime (SHRP2 Report: S2-R06A-PR-1)

12

How data collection speed affects? Camera spec?

(ASTM: ≤16km/h (10MPH))

0 km/h

48 km/h

100

Objectives of the study

- Reveal challenges & uncertainties for IRT
- Explore solutions, proper methods & ideal conditions
- Standardize Image-Based inspection
 - 1. Effect of delamination size and its correlation to IRT
 - 2. Suitable time window for IRT application
 - 3. Effect of data collection speed & IR camera spec.
 - 4. Evaluate the accuracy of high-speed scanning
 - 5. How to utilize NDE data for bridge management

Test method

Difficulties for preparing test specimens

- ➤ Make several specimens and delamination
- Handle them under different conditions
- ⇒ Limited test specimens have been utilized
- \Rightarrow *IRT tests have been conducted under limited conditions*

Same size of FE model was developed (COMSOL Multiphysics)

FE model validation

IRT data was collected;

- Every 30 minutes from 7 to 10 AM
- Every hour from 10 AM to midnight

The disparities are less than 1 °C

- Measurement error range
- IR cameras with different specifications indicated approx. 1 °C at most

This FE model reproduced the temperature differences properly

Compared temperature differences b/w sound and delaminated parts

1.27 cm at12 PM (noon)

Compared temperatures of delaminated and sound points

Effect of delamination size: FE model

Same conditions of the FE model was used

Dimensions of FE model:

- \triangleright Concrete block: 300 \times 300 \times 20.3 cm (expanded)
- ➢ Delamination area: L = 10, 15, 20, 30, 40, 50 & 60 cm
- \blacktriangleright Delamination thickness: T = 0.1, 0.3, 1, 10, 15 cm
- > Depth of delamination: 5.1 cm (2 in.) depth (typical top concrete cover)

Effect of delamination area

Simulated delamination at 5.1 cm depth: $A = 100 \text{ cm}^2$ to 3,600 cm², T = 0.3 cm, $V = 10 \text{ cm}^3$ to 1,080 cm³

- ΔT increases as the area increases
- ΔT converges to a certain value: approx. 40 \times 40 cm

Effect of delamination thickness & volume

Simulated delamination at 5.1 cm depth:

 $A = 100 \text{ cm}^2 \& 900 \text{ cm}^2$, T = 0.1 to 15 cm, $V = 10 \text{ cm}^3$ to 13,500 cm³

- A = 100 cm² :thickness and volume \Rightarrow insignificant impact on ΔT
- $A = 900 \text{ cm}^2$: ΔT increases as the thickness increases
- The effect of thickness increases as the area increases
- The effect of thickness converges to a certain value: approx. 1 cm
- Volume has no effect on ΔT

 $(270 \text{ cm}^3 (30 \times 30 \times 0.3 \text{ cm}) > 1,500 \text{ cm}^3 (10 \times 10 \times 15 \text{ cm})$

Detectable depth by IRT

Assumed delamination detection range of ΔT > Outside of \pm 0.2 °C: probably detectable by IRT

Delamination at 5.1 cm (2 in) depth ightarrow If A \geq 15 \times 15 cm (T = 0.3 cm)

Field Laboratory Study

Explore factors which affect IRT for high-speed application➢ Take IR images from a stopped and moving vehicle

IR cameras can be classified into two types:

- Thermal detectors (Uncooled cameras)
- Quantum detectors (Cooled cameras)
- Uncooled cameras: past studies
- Only one camera
 - \Rightarrow Economic reasons

Uncooled cameras

Cooled camera

-	Camera Number	T420	T640	T650	SC5600	
	Detector type	Uncooled	Uncooled	Uncooled	InSb	
	Detector type	microbolometer	microbolometer	microbolometer	(Cooled)	
	Thermal Sensitivity (NETD)	<0.045°C at 30°C	<0.035°C	<0.02°C	<0.02°C at 25°C	
	Accuracy	$\pm 2^{\circ}$ C or $\pm 2\%$	$\pm 2^{\circ}$ C or $\pm 2\%$	$\pm 1^{\circ}$ C or $\pm 1\%$	$\pm 1^{\circ}$ C or $\pm 1\%$	
	Resolution	320×240 pixels	640 × 480 pixels	640×480 pixels	640×512 pixels	
6	Spectral range	7.5 - 13 μm	7.5 to 14 μm	7.5 to 14 μm	2.5 - 5.1 μm	
	Field of View	25° × 19°	25° × 19°	25° × 19°	20° × 16°	
2	Integration Time/Time Constant	12 ms	8 ms	8 ms	10 µs to 20 ms	
	(Electronic Shutter Speed)	12 1115	0 1115	0 1115		

Test results

IRT data was collected;

- 9 AM, 3 PM, 8 PM and 12 AM (temp. range: 5K except 3PM (10K))
- At 0 km/h and 48 km/h

Only SC5600 was not affected

Comparative Study on a bridge

Comparison with other NDEs (Chain drag, IE, IRT, GPR)

Bridge in Haymarket, VA

Camera setup

(Source: Gucunski et al. 2013; Oh et al. 2013) (Empty circles indicate cores from delaminated areas)

Comparison of core sample locations

	(a)	(b)	(c)	(d)	(e)	(f)	(1)	(2)	(3)	(4)	(5)	(6)	
Point	IE - 1	IE -2	IR(T400)	Chain drag	g GPR - 1	GPR - 2	IR(SC5600)	IR(SC5600)	IR(T640)	IR(T640)	IR(T420)	IR(T420)	
							(8:50 PM)	(10:30 PM)	(8:50 PM)	(10:30 PM)	(8:50 PM)	(10:30 PM)	
C-1	0	0	0	× (FP)	× (FP)	0	0	0	×(FP)	× (FP)	× (FP)	× (FP)	sound
C-2	0	0	0	0	0	× (FP)	0	0	0	× (FP)	0	× (FP)	sound
C-3	0	× (FN)	0	0	0	0	0	0	0	0	0	0	delaminated
C-4	0	0	0	0	× (FN)	× (FN)	0	0	0	0	0	0	delaminated
C-5	0	0	0	0	0	0	0	0	×(FP)	×(FP)	× (FP)	× (FP)	sound
C-6	0	0	0	0	0	0	0	0	×(FP)	× (FP)	0	× (FP)	sound
C-7	0	0	N/A	0	0	0	0	0	0	0	0	0	sound
C-8	0	× (FN)	N/A	× (FN)	× (FN)	× (FN)	× (FN)	0	0	0	×(FN)	0	delaminated
Accuracy	100%	75%	100%	75%	63%	63%	88%	100%	63%	50%	63%	50%	
FP(%)	No error	0%	No error	50%	33%	33%	0%	No error	100%	100%	67%	100%	FP/all errors

Note: FP = False Positive (Judged sound part as delaminated part)

FN = False Negative (Failed to detect delamination)

- Cooled camera (SC5600): most accurate (same as IE-1) (IRT: highway speed without lane closures; IE-1: w/ lane close)
- Uncooled cameras (T640 & T420): several False Positive misdetections
 ⇒ Less reliable for high-speed scanning

Comparison of shapes of indicated delamination

Compared with three NDE methods (a) IE-1, (c) IRT (with T400), (d) Chain drag

➤ SC5600 shows identical indication with other NDE methods

- ➤ T640 & T420 show larger area of damage indications
- Uncooled cameras were affected by high-speed application

IRT with a cooled camera has a high potential to evaluate bridge deck condition accurately at highway speeds without lane closures

Conclusions for uncertainties of IRT

- 1. Effect of delamination size and its correlation to IRT
 - > Area of delamination is the critical factor
 - > Detectable depth: highly dependent on the size of delamination
- 2. Suitable time window for IRT application

> Nighttime is preferable for bridge deck inspection

- 3. Effect of data collection speed & IR camera spec.
 - ≻ Slow shutter speed of uncooled cameras are affected
 - Cooled cameras has a high potential for high-speed scanning
- 4. Evaluate the accuracy of high-speed scanning

> Cooled cameras: similar level or better accuracy than other NDEs

By understanding the limitations and capability of IRT, engineers can maximize the advantages for bridge inspections

Bridge management based on image-based inspection Bridge 890082 (South Bound) Evaluation of bridge deck condition N years ago SPANA Defect # 2 3 Ν Area of defect (ft. 2) 0.02 0.03 0.01 0.04 CON STAT QUANT Nofd SPAL CRAC DELA PATC MISC Distalimas Ratio to the deck area (%) 0.01 0.01 0.01 0.01 Total defects area $(ft.^2)$ 0.1 Total area ratio to the deck (%) 0.1 Present Delamination-2 Delaminated area ratio to deck area (%) CON STAT QUANT Nofd SPAL CRAC DELAI PATC MISC 10 1 0.1 mination-3 CON STAT QUAN N of d SPAI CRAI DELA RATO 0.01 0 Present Present 10 ···N -10 year 10 years ago Predict future defect grows ratio 872 based on periodic inspection data ation-4 10 years later IIE5

Recommendation for new inspection framework (Example) (IRT & HD)

If sever damage is detected

(IRT & HD)

Every year: High-speed scanning

• Bridge deck

w/ IRT & HD

Hundreds/Thousands times faster

Every 2-3 years: Efficient inspection

 Superstructure, Substructure, Culvert, Railing, etc.
 w/ IRT & HD

Every 5-6 years or as needed: Detailed inspection

- Every component (including Bearing, Joint, etc.)
- Damaged parts detected above two inspections

w/ other NDE techniques (IE, GPR, Sounding, etc.)

Further Research need (Validation to prove the accuracy)

- Indicated area causes different sound
 Validated
- Shaded part is difficult for IRT

Thank you for your attention!!

Any Questions?

【Contact Info】 University of Central Florida Shuhei Hiasa <u>hiasa615@Knights.ucf.edu</u>

Effect of camera spec. for high-speed scanning

When T420 was used at 48 km/h

- ➢ IR image was blurred
- Damage indications became unclear

Shutter speed:

- SC5600: 3 ms (this experiment)
- T640: 8 ms
- T420: 12 ms

During one shutter

- T640 covers about 2.7 times
- T420 covers about 4 times longer than SC5600

Uncooled cameras make blurred images due to slow shutter speed

(a) Closer distance (0 km/h)

Delamination size and detectable depth

Detectable depth by IRT: highly dependent on the size of delamination

