Weathering Steel in Bridge Replacement of Rail Overbridges

27 November 2017
Outline

- Introduction
- What is Weathering Steel
- Benefits
- Design Considerations
- Recent Experience with Weathering Steel
 - Nooroo Overbridge
 - Michelago Overbridge
 - Cooma Overbridge
- Conclusion
Introduction – NSW Timber Bridges

- 1,894 Council owned bridges (2014 IPWEA)
 - 950 in fair condition
 - 504 in poor condition
- 83 Country Rail owned bridges
- Program of Bridge Replacements
 - Improve safety
 - Eliminate load capacity restrictions
 - Reduce maintenance commitment
 - New low maintenance structures
Bridge Replacement Options

- Proprietary Precast Concrete Modular Bridge Deck Systems
 - M-Lock® bridge system - Rocla Span 7m to 15m
 - HumeDeck® bridge system - Span 6m to 12m
- RMS Country Bridge Solution (CBS)
 - Prestressed Concrete Double T-Deck Modules – Span 8m to 12m
- PSC Planks
 - RMS Planks – Span 6m to 18m
 - QLD PSC Deck Units with Transverse Stressing – Span 12m to 25m
- PSC Super-T Girders (T-Roff) – Span 18m to 37m
Bridge Replacement Options

- Steel Bridges
 - Traditionally Not the first choice!
 - Typically second consideration where weight and/or structural depth prevent the use of concrete
 - As low as 5% of bridge designs in recent years

- Issues
 - Ongoing maintenance of the protective coating
 - Whole of life cycle costs

- INTRODUCTION OF WEATHERING STEEL WILL CHANGE THIS
What is Weathering Steel

- Structural steel alloy with enhanced atmospheric corrosion resistance
- Uncoated it develops a stable protective oxide coating, ‘Patina’ which prevents the steel’s tendency to continually rust
- Alloying elements include copper, chrome, silicon, nickel and phosphorus
- Commonly referred to as COR-TEN® (United States Steel Corporation) and typically used for architectural panels, screens and cladding applications
- BlueScope Steel now manufacture structural plate from 10 to 80mm thickness complying with AS/NZS 3678 Structural steel – Hot-rolled plates, floor plates and slabs
Weathering Steel

- BlueScope’s REDCOR™ Weathering Steel AS/NZS 3678-WR350 (B) (L0, L20)
 - 10mm-80mm
- Chemical composition refined and engineered to provide
 - High steel toughness
 - Good weldability

- Comparable alloy levels of standards for weathering steels, ASTM A588 and A709 and EN 10025 Part 5
- AS/NZS 3678-WR350 is a genuine high strength structural plate grade
- Approx. 15% premium on material cost

<table>
<thead>
<tr>
<th>Tensile Properties (Transverse)</th>
<th>Thickness (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9.95 < t ≤ 16</td>
</tr>
<tr>
<td>Yield Strength (MPa)</td>
<td>Guaranteed Min</td>
</tr>
<tr>
<td>Tuntypically (400 – 480)</td>
<td>400 – 450</td>
</tr>
</tbody>
</table>

| Tensile Strength (MPa) | Guaranteed Min | | | | |
| Tuntypically (500 – 580) | 480 – 530 | 490 – 580 | 460 – 550 | 500 – 580 |

| Elong. On 5.65√S₀ (%) | Guaranteed Min | | | | |
Weathering Steel Bridges

- No Road/Rail public weathering steel bridges in Australia
 - Forestry Tasmania in 1990’s built weathering steel plate girder bridges
- First used worldwide:
 - 1964 – USA, New Jersey Turnpike
 - 1969 – Rail bridge in UK
 - 2012 – KiwiRail replaced 4 underbridges
- Over 50 years of data on performance

Forestry Tasmania, 2013
Benefits of Steel

- **Structural Benefits**
 - High strength to weight ratio
 - Minimise structural depth
 - Longer spans
 - Variable structural depth
 - Splice connections for continuous spans
 - Less demand on substructure design

- **Construction Benefits**
 - Lighter girders
 - Rapid construction
 - Fabrication off site in controlled workshop, automated

- All steel is visible for inspection
Weathering Steel vs Conventional Steel

- No protective coating
 - Additional cost premium offset
 - Quicker fabrication
- No coating maintenance
 - Reduced whole of life cost
 - No temporary scaffold
 - No temporary lane closures
- Environmental benefits
 - No VOC from oil based coatings
 - No coating removal or containment of particles
Benefit of Steel Bridge Replacement - Example

- Rail Overbridge replacement over the North Coast Line near Stroud, NSW
Benefit of Steel Bridge Replacement - Example

- Concrete PSC Plank deck units with transverse stressing adopted and designed
Benefit of Steel Bridge Replacement - Example

- Mass of plank 38 tonnes
- Required 300 tonne crane with a gross mass of 72 tonnes
- Existing approach creek crossings
- Timber bridges structurally inadequate
- Temporary propping required
- Environmental issues

- Re-design bridge with steel I-girders = less weight = smaller crane = no temporary propping
Benefit of Steel Bridge Replacement - Example

- Redesign with steel I-girders and composite concrete deck including precast deck panels
Benefit of Steel Bridge Replacement - Example

- 1000WB322 Girders 8.5 tonnes
Benefit of Steel Bridge Replacement - Example

- 1000WB322 Girders 8.5 tonnes
- Precast concrete formwork key in achieving fast, simple and safe deck construction
- Simplicity of design in steel, precast concrete formwork and composite cast in-situ deck was such that overall $200,000 savings compared to concrete PSC bridge
Benefit of Steel Bridge Replacement - Example

- 1000WB322 Girders 8.5 tonnes
- Precast concrete formwork key in achieving fast, simple and safe deck construction
- Simplicity of design in steel, precast concrete formwork and composite cast in-situ deck was such that overall $200,000 savings compared to concrete PSC bridge

ADDITIONAL BENEFITS IF WEATHERING STEEL USED

- Whole of life cost less than concrete bridge
Weathering Steel Design Considerations

- AS5100.6 (2017) weathering steel requirements include;
 - Corrosion allowance (CI 3.7.2)
 - Fatigue category (CI 13)
 - Welding consumables (Appendix H4.2)
- Strength and serviceability requirements no different

- Two key considerations for durable weathering steel design;
 1. Suitable Site Condition
 2. Bridge Detailing
Weathering Steel Design Considerations

- **Design References**
 - New Zealand Weathering Steel Guide for Bridges: HERA Report R4-97:2005
 - UK Design Manual for Roads and Bridges Volume 2 Section 3 Part 8 – BD 7/01 Weathering Steel for Highway Structures
 - FHWA Technical Advisory “Uncoated Weathering Steel in Structures”

- **BlueScope Information**
 - REDCOR™ weathering steel Product Brochure
 - Weathering steel Design Guide for Bridges in Australia (HERA Guide)
 - Technical Bulletin 26
 - Technical Note – Guidance on the welding of weathering steels
 - Datasheet – AS/NZS 3678-WR350 (B) (L0, L20)
Suitable Site Condition

- Atmospheric environment major factor in formation and long term performance of the patina
- NOT suitable environments include:
 - Constant dampness, buried
 - High chloride concentrations, coastal environment
 - High pollutant concentrations, industrial area, corrosive fumes
 - Directly over water bodies within 2.5m (UK BD 7/01)
- Require constant wetting, drying cycles to form adherent, stable patina
 - Moisture day/night cycle
- Corrosion allowance related to atmospheric environment and classification
Atmospheric Classification

- AS4312 – Atmospheric corrosivity zones in Australia
- Category C5 and C4 not suitable
- Category C3 Site specific studies recommended
- Category C2 and C1 suitable
- Corrosion allowance as per AS5100.6 (2017)

<table>
<thead>
<tr>
<th>Category</th>
<th>Corrosivity</th>
<th>Environment</th>
<th>Corrosion Allowance</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>Very Low</td>
<td>Dry indoors</td>
<td>1mm</td>
</tr>
<tr>
<td>C2</td>
<td>Low</td>
<td>Arid / Urban Inland</td>
<td>1mm</td>
</tr>
<tr>
<td>C3</td>
<td>Medium</td>
<td>Near Coast</td>
<td>1.5mm</td>
</tr>
<tr>
<td>C4</td>
<td>High</td>
<td>Coastal</td>
<td>N/A</td>
</tr>
<tr>
<td>C5</td>
<td>Very High</td>
<td>Sea-Shore</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Bridge Detailing

- Drainage
 - Steelwork can dry out, eliminate moisture and debris retention, drip plates on bottom flange
 - Grind flush welds, terminate web stiffeners above the bottom flange,
 - Avoid expansion joints where possible
 - Control run-off from steelwork, staining, slope abutment headstocks, bearing plinths and drip pans
Bridge Detailing

- **Welding**
 - Weathering steel has similar welding characteristics to conventional structural steel
 - AS/NZS 1554.1 is applicable
 - Welding consumable selection
 - Welding consumables from Table 4.6.1(C) of AS/NZS 1554.1 providing consistent corrosion and colouring
 - BlueScope Technical Bulletin 26 Weathering Steel
 - BlueScope Technical Note on the Welding of Weathering Steels

- **Bolting**
 - Galvanic reaction, zinc galvanised bolts sacrificed
 - Weathering grade bolts to ASTM A325 Type 3 equivalent to property class 8.8
Bridge Detailing

- **Aesthetics**
 - Colour and texture varies over time
 - Initially orange-brown as the patina develops to the uniform characteristic dark brown
 - Post fabrication blast clean with non-metallic grit
 - Urban design aspect is subjective

2 months 1 year 29 years

 NSSMC website
Recent Experience – Nooroo Overbridge

- Overbridge on Nevilles Road at 263.816km over the North Coast Line
- Jacobs appointed by JHR-CRN to provide design for the replacement
- Existing timber bridge 22.9m length and 3.8m width
- New low-maintenance structure that meets the needs of the asset owner and the local government authorities
- Preferred Option - composite weathering steel I-girder superstructure with precast deck panels

- Construction methodology
- Lighter girders
- Comparable whole of life cost
Recent Experience – Nooroo Overbridge

- Overall deck length of 20.67m and width between barriers of 4.5m
- 3 x 1024mm deep I-girders AS/NZS 3678-WR350 at 2.0m c/c
 - 400 x 32 thick top flange
 - 16 thick web
 - 400 x 32 thick bottom flange
- Precast concrete 125mm thick formwork full width panels that include upturns on each side to act as formwork for the in-situ concrete traffic barrier.
- 125mm thick in-situ concrete slab to form a total 250mm concrete deck.
Recent Experience – Nooroo Overbridge

- Atmospheric corrosivity category is C2: Low in accordance with AS 4312
 - Bridge site approx. 42km from coast
 - Topography provides shielding from salt spray
 - Rural and remote from sources of pollution
 - Adopted a 1.0mm per exposed face corrosion allowance
Recent Experience – Nooroo Overbridge

- Bridge detailing adopted includes
 - Concrete plinths to avoid any debris retention
 - Intermediate stiffeners minimised
 - Drip plates at low end of outer girders to deflect any runoff and prevent debris accumulation
 - Sloping abutment to control run-off
 - Fully sealed small movement joints
 - Stainless steel drip pan to protect the laminated elastomeric bearings
Recent Experience – Nooroo Overbridge

- Precast concrete deck panel
 - Fully decked to provide a safe working platform during construction
 - Upturns on each side to act as formwork for the in-situ concrete traffic barrier
 - Ease of construction over rail line during track possession
 - Mass of panel 6.8 tonnes

- Formed holes within deck panel for groups of shear studs
 - AS5100.6 requires complete shear interaction
 - Spacing and size of voids balanced with concrete width required for strength
Recent Experience – Michelago Overbridge

- Overbridge on Kelly Road at 363.533km over the Goulburn to Bombala Line
- Jacobs appointed by JHR-CRN to provide design for the replacement
- Existing timber bridge 20.1m length and 7.1m width
- New low-maintenance structure that meet the needs of the asset owner and the local government authorities
- Preferred Option - composite weathering steel I-girder superstructure with integral abutments

- Low maintenance structure
- Lighter girders
- Comparable whole of life cost
Recent Experience – Michelago Overbridge

- Overall deck length of 20.5m and width between barriers of 8.0m
- 4 x 808mm deep I-girders AS/NZS 3678-WR350 at 2.4m c/c
 - 400 x 20 thick top flange
 - 16 thick web
 - 400 x 28 thick bottom flange
- Composite concrete deck of 265mm overall thickness, 75mm thick precast ‘Humeslab’ and 190mm thick in-situ
- Full height precast concrete bridge barriers
Recent Experience – Michelago Overbridge

- Atmospheric corrosivity category is C2: Low in accordance with AS 4312
 - Bridge site >50km from coast
 - Rural and remote from sources of pollution
 - Adopted a 1.0mm per exposed face corrosion allowance
Recent Experience – Michelago Overbridge

- Bridge detailing adopted includes:
 - Intermediate stiffeners minimised
 - Drip plates at low end of outer girders to deflect any runoff and prevent debris accumulation
 - Integral connection eliminates any runoff issue through joints

![Bridge Diagram](image-url)
Recent Experience – Cooma Overbridge

- Overbridge on Thurrung Street at 432.700km over the Goulburn to Bombala Line
- Jacobs appointed by JHR-CRN to provide design for the replacement
- Existing Bailey Bridge 21.35m length and 3.57m width between trusses and 6.27m overall width with the pedestrian walkway.
- New low-maintenance structure that meet the needs of the asset owner and the local government authorities
- Preferred Option - composite weathering steel I-girder superstructure with integral abutments

- Low maintenance structure
- Lighter girders
- Comparable whole of life cost
Recent Experience – Cooma Overbridge

- Overall deck length of 24.65m and width between barriers of 11.0m incl. shared use path
- 6 x 898mm deep I-girders AS/NZS 3678-WR350 at 2.0m c/c (braced in pairs to assist with stability in transportation and erection)
 - 400 x 20 thick top flange
 - 16 thick web
 - 400 x 28 thick bottom flange
- Precast concrete deck panels providing total a total 250mm composite concrete deck
Recent Experience – Cooma Overbridge

- Atmospheric corrosivity category is C2: Low in accordance with AS 4312
 - Bridge site >50km from coast
 - Rural and remote from sources of pollution
 - Adopted a 1.0mm per exposed face corrosion allowance
Recent Experience – Cooma Overbridge

- Bridge detailing adopted includes
 - Intermediate stiffeners minimised
 - Drip plates at low end of outer girders to deflect any runoff and prevent debris accumulation
 - Integral connection eliminates any runoff issue through joints
Weathering Steel Opportunities

- Composite Weathering Steel Superstructure
 - Longer spans
 - Variable depth
 - Splice connections for continuous spans
 - Eliminate heavy concrete girders
 - Less demand on substructure design
Conclusion

- The availability of weathering steel in larger plate sizes from BlueScope Steel warrants the use of steel bridge designs to be revisited for Rail Overbridges
- We have demonstrated that weathering steel bridges can be cost competitive against concrete alternatives
- We hope this will generate discussion and exchange of ideas for weathering steel bridges
Acknowledgements

• John Steele – Jacobs Technical Director Bridges
• Felix Lie – Jacobs Bridge Engineer
Weathering Steel in Bridge Replacement of Rail Overbridges

Thankyou