

Geographic Determinants of Hepatitis C Screening in a Mixed Urban/Rural Epidemic

Affiliations: ¹University of Wisconsin School of Medicine & Public Health, Department of Medicine, Madison, United States ²The George Washington University Milken Institute School of Public Health, Department of Prevention & Community Health, Washington, DC, United States

Background

- Prior research has shown that syringe exchange programs can facilitate screening for hepatitis C virus among people who inject drugs.
- Syringe exchange programs are relatively uncommon in non-urban settings, and whether limited access to such programs affects hepatitis C testing for people who inject drugs in rural communities is unknown.
- The goal of this study was to determine whether travel distance to syringe exchange programs affects hepatitis C testing among people who inject drugs.

Methods

- A social-network based strategy was used to recruit people who inject drugs from a large multi-site syringe exchange program in Wisconsin, USA.
- Participants completed a computerized questionnaire to gather information about previous hepatitis C testing, place of residence, and other demographic characteristics. As a standard service to syringe exchange clients, all participants were offered a rapid hepatitis C test at the time of enrollment. For the purpose of this analysis, anyone who received their first ever hepatitis C test at enrollment was not considered having been previously tested.
- We used geocoded addresses and Google Maps to estimate driving distances between home addresses and the nearest syringe exchange program.
- Participants were considered urban-dwelling if they resided in one of Wisconsin's two largest municipalities: Milwaukee or Madison, where the syringe exchange programs are located.
- Multiple logistic regression was used to estimate the association between travel distance and the odds of being tested for hepatitis C among rural- and urbandwelling participants, while adjusting for the

confounding influences of gender, employment status, and access to health care.

Figure 1: Social network diagram of peer referral chains, by hepatitis C testing history

Figure 2: Social network diagram of peer referral chains, by hepatitis C

Table 1: Demographic Characteristic of Urban vs. Rural Participants

Categorical Characteristic	Urban, N (%)	Rural, N (%)	P-Value	
Male	127 (83.0)	51 (64.6)	0.0017	
Female	26 (17.0)	28 (35.4)		
Not Employed	112 (73.2)	46 (59.0)	0.0278	
Employed	41 (26.8)	32 (41.0)		
Not homeless in past year	55 (35.9)	55 (69.6)	<0.0001	
Homeless in past year	98 (64.1)	24 (30.4)		
No health insurance	19 (12.5)	11 (13.9)	0.7600	
Have health insurance	133 (87.5)	68 (86.1)	0.7000	
No PCP	63 (41.4)	28 (35.9)	Ο 4151	
Have a PCP	89 (58.6)	50 (64.1)	0.4151	
Income \$0-\$11,499	119 (79.9)	50 (64.1)	Λ ΛΛΩΤ	
Income >\$11,499	30 (20.1)	28 (35.9)	0.0097	
White	65 (43.0)	71 (89.9)		
Non-white	86 (57.0)	8 (10.1)	<0.0001	
Did not finish high school	44 (29.1)	20 (25.6)	0.57.61	
High school graduate	107 (70.9)	58 (74.4)	0.5761	
Not living with children	132 (86.8)	54 (69.2)	0.004.2	
Living with children	20 (13.2)	24 (30.8)	0.0013	
Do not use heroin every day	104 (69.8)	41 (51.9)		
Use heroin every day	45 (30.2)	38 (48.1)	0.0075	
Never tested for HCV	46 (30.1)	21 (26.6)	0.5791	
Previously tested for HCV	107 (69.9)	58 (73.4)		
Never tested HCV-positive	126 (82.4)	61 (77.2)	0.3483	
Have tested HCV-positive	27 (17.6)	18 (22.8)		
Continuous Characteristic	Urban Mean (Std. Dev)	Rural Mean (Std. Dev)	P-Value	

Continuous Characteristic	Urban Mean (Std. Dev)	Rural Mean (Std. Dev)	P-Value	
Age	32.3 (9.0)	38.3 (11.6)	0.0002	
# of people they share needles/cottons/cookers with	3.2 (4.0)	5.6 (13.1)	0.0542	
% of time they use a new, unused needle	69.8 (28.8)	67.2 (28.6)	0.5286	
% of time they use a needle that had already been used by someone else	14.2 (27.0)	12.1 (18.9)	0.5604	
Duration of injecting drugs (years)	6.7 (7.7)	11.3 (10.9)	0.0019	
Driving distance to nearest SEP (miles)	41.2 (29.6)	3.5 (3.1)	<0.0001	

Results

- Prevention staff recruited 40 syringe exchange program clients. These clients recruited 195 eligible peers from their social networks, allowing for a total study population of 235.
- On average, participants reported having injected drugs for 7.8 years. Heroin was the drug most frequently injected by participants and nearly half reported injecting on a daily basis.
- Overall, 67 individuals (28.9%) reported they had never been tested for hepatitis C (Figure 1).
- Overall, 45 individuals (19.4%) had previously tested positive for hepatitis C (Figure 2).
- 79 participants were considered rural-dwelling and 153 participants were considered urbandwelling. Urban- and rural-dwelling participants differed with respect to several baseline characteristics (Table 1).
- Overall, no association was observed between travel distance to a syringe exchange program and previous hepatitis C testing. However, we found that the relationship between travel distance and being tested for hepatitis C differed significantly between urban and rural participants.
- We identified several other independent predictors of hepatitis C testing that differed significantly between urban- and rural-dwelling respondents (Table 2 and Figure 3).
- The main predictors of hepatitis C testing in an urban setting were demographic variables such as being employed and having health insurance.
- The main predictors of hepatitis C testing in a rural setting were related to health care access, include having a primary care provider and travel distance to the nearest syringe exchange program.

Table 2: Significant predictors of HCV Screening

	overall (n=232)		urban participants (n=153)		rural participants (n=79)	
Demographic Characteristic	Crude Odds Ratio (95% CI)	Adjusted Odds Ratio (95% CI)	Crude Odds Ratio (95% CI)	Adjusted Odds Ratio (95% CI)	Crude Odds Ratio (95% CI)	Adjusted Odds Ratio (95% CI)
Female vs Male	2.36 (1.08-5.15)	2.94 (1.26-6.84)	2.00 (0.71-5.69)	2.18 (0.72-6.59)	3.00 (0.90- 10.04)	4.68 (1.16-18.95)
Employed vs Not Employed	2.33 (1.18-4.61)	2.72 (1.32-5.59)	2.59 (1.05-6.39)	2.68 (1.02-7.06)	2.10 (0.71-6.18)	1.67 (0.48-5.81)
Have health insurance vs No health Insurance	2.04 (0.94-4.46)	1.81 (0.75-4.32)	3.11 (1.17-8.29)	2.98 (1.03-8.66)	1.04 (0.25-4.36)	0.49 (0.08-2.86)
Have a PCP vs. do not have a PCP	1.68 (0.94-2.99)	1.24 (0.65-2.38)	1.19 (0.59-2.41)	0.87 (0.39-1.92)	3.42 (1.21-9.66)	3.09 (0.87-11.02)
Driving distance to nearest SEP (per 10 miles)	0.94 (0.85-1.05)	0.90 (0.79-1.01)	2.19 (0.62-7.78)	1.34 (0.34-5.28)	0.82 (0.68-0.98)	0.81 (0.66-0.99)

BOLD = Statistically significant ($p \le 0.05$)

Figure 3: Predictors of HCV screening overall, in a rural setting, and an urban setting

Discussion

- Despite recommendations that people with a history of injection drug use should be screened for hepatitis C in health care settings, many are not receiving testing.
- Barriers to hepatitis C testing and prevention in rural communities are very different from barriers in urban communities, where the majority of epidemiologic studies have been conducted.
- Geographic inaccessibility of syringe exchange programs appears to pose a significant barrier to hepatitis C testing for rural-dwelling people who inject drugs.
- Additional research is needed to develop hepatitis C screening strategies that are responsive to the unique challenges in rural communities.

Acknowledgements

This work was supported by the Clinical and Translational Science Award (CTSA) program, through the NIH National Center for Advancing Translational Sciences (NCATS) [grant number <u>UL1TR000427</u>]. RPW is supported by the National Institutes of Health [grant number K23DA032306].

Author contact information

Karli Hochstatter, MPH University of Wisconsin School of Medicine & Public Health Department of Medicine, Division of Infectious Disease khochsta@medicine.wisc.edu (920) 960-0002