Seroprevalence of Chlamydia trachomatis (CT) In American Children and Adolescents - Implication for Vaccine Development

Natalie Banniettis1, Sirisha Thumu2, Aviva Szigeti1, Shivani Sharma1, Kobkul Chotikanatis1, Stephan A. Kohlhoff3, Margaret R. Hammerschlag1

1Pediatrics, State University of New York Downstate Medical Center, Brooklyn, NY
2Pediatrics, Lutheran Medical Center, Brooklyn, NY

Abstract

Background: CT remains the most prevalent sexually transmitted infection in developed and developing countries. Prevention of infection is an ideal application for a vaccine program. Similar to the HPV vaccine, the timing of immunization for a future CT vaccine should optimally precede sexual debut. However, there are limited epidemiologic studies of CT infection in an unselected pediatric and adolescent population since universal screening and treatment of pregnant women was implemented in the U.S. in 1999.

Objective: To determine current seroepidemiology of CT infection in a US inner city population.

Design/Methods: Anonymized serum samples were obtained from children in 2 hospitals in Brooklyn, NY from 2012-2015. CT IgG was determined using EIA (Ani Labsystems). The following age strata were used: 9-11, 12-14, 15-16, 17-18, 19-20 y.

Results: 512 sera were included in the final analysis. Mean age 17 y. There were 192 (37.5%) males and 320 (62.5%) females. CT antibody was first detected at 14 y in females and at 18 y in males. The prevalence per age cohort were: females: 11-14 y: 0.4%, 15-16 y: 3.64%, 17-18 y: 5.99%, 19-20 y: 14.75%; Males: 11-16 y: 0, 17-18 y: 8.51%, 19-20 y: 9.33%.

Conclusions: The prevalence of antibody was higher in girls than their male counterparts, mirroring national surveillance trends based on NAATs (13,6).

Discussion

• The prevalence of antibody was higher in girls than their male counterparts, mimicking national surveillance trends based on NAATs (13,6).

• Antibody was first detected in females at 14 y and males at 18 y. The delay in male antibody detection may be due to later exposure and/or anatomical and physiological factors between the sexes.

• These data may have implications for determining the age range for future CT vaccine trials.

Conclusions

• Although chlamydia screening is expanding, many women who are at risk are still not being routinely tested - reflecting, in part, the lack of awareness among some health care providers and the limited resources available to support these screenings. A CT vaccine may prove a viable alternative in future chlamydia prevention efforts.

• Similar to the HPV vaccine, the timing of immunization for a future CT vaccine should optimally precede sexual debut.

• A compartmental heterosexual transmission model has been developed to assess the health and economic outcomes of a hypothetical chlamydia vaccine for persons aged 15-24 years in the U.S.. Their analysis showed that a high-performance chlamydia vaccine could potentially eliminate chlamydia infection (if > 75% coverage) among susceptible persons before their sexual debut. They also concluded that such a vaccine would be cost-effective (9).

• However, initiation of vaccination at age 14-15 y may be too late for our population and may not be applicable globally.

• Larger epidemiologic studies are needed to confirm current CT prevalence rates in children, especially in children younger than 14 years of age.

References


Introduction

• C. trachomatis (CT) has been the most frequently reported notifiable disease in the U.S since 1994 (1).

• CT infection is frequently asymptomatic in adults and may go untreated leading to sequelae, such as PID and infertility.

• The USPSTF and CDC recommend annual screening of all sexually active women aged <25 y (2,3).

• Worldwide, CT incidence was estimated at ~105.7 million cases among adults 15-49 y of age in 2008; a 4.1% increase from 2005 (4).

• NHANES (2007–2012): Among sexually active females aged 14–24 y, the population targeted for routine screening, chlamydia prevalence was 4.7% overall and 13.5% among non-Hispanic black females (5).

• The prevalence of CT in the U.S. among sexually active females 14–19 y (1999-2008) has been estimated to be 6.8%. Estimated prevalence in NY in 2011 was 9% (1).

• Analysis of NHANES data estimated the prevalence of CT in males to be ~2x less than their female counterparts age 14-19 y (6).

• There are limited epidemiologic studies of CT infection in an unselected pediatric and adolescent population since universal screening and treatment of pregnant women was implemented in the U.S. in 1993 (7).

Aim

• To determine current seroepidemiology of CT infection in children and adolescents in a US inner city population

Methods

• Anonymized serum samples were collected prospectively from children in 2 hospitals in Brooklyn, NY from 2013-2015.

• DMC serves a predominantly Caribbean and AA population.

• LMCC serves a mixture of different ethnicities.

• Serum samples were divided into the following strata: 9-10, 9-12, 12-14, 15-16, 17-18, 19-20 y.

• Anti-CT IgG was determined using EIA (Ani Labsystems).

• IgG ≥ 1:16 was considered positive.

<table>
<thead>
<tr>
<th>Age Strata (y)</th>
<th>Females</th>
<th>Females 95% CI</th>
<th>Males</th>
<th>Males 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>9-10</td>
<td>0/22</td>
<td>0% , 0%</td>
<td>0/16</td>
<td>0% , 0%</td>
</tr>
<tr>
<td>11-12</td>
<td>0/18</td>
<td>0% , 0%</td>
<td>0/20</td>
<td>0% , 0%</td>
</tr>
<tr>
<td>13-14</td>
<td>1/39 (2.6%)</td>
<td>0% , 7.59%</td>
<td>0/25</td>
<td>0% , 0%</td>
</tr>
<tr>
<td>15-16</td>
<td>3/57 (5.3%)</td>
<td>0% , 11.12%</td>
<td>0/30</td>
<td>0% , 0%</td>
</tr>
<tr>
<td>17-18</td>
<td>15/88 (17%)</td>
<td>9.15% , 24.85%</td>
<td>3/47 (6.4%)</td>
<td>0% , 13.4%</td>
</tr>
<tr>
<td>19-20</td>
<td>20/128 (16%)</td>
<td>9.65% , 22.35%</td>
<td>7/76 (9.2%)</td>
<td>2.7% , 15.7%</td>
</tr>
</tbody>
</table>