The impact of screening on chlamydia transmission in Australia – a mathematical modelling study

Ben Hui, Jane Hocking, Nicola Low and David Regan
On behalf of the ACCEPt investigator team

Chlamydia transmission model

- We developed an individual-based model to represent the sexual network and the transmission of chlamydia in the general Australian heterosexual population.
- Aims:
 - To assess the impact of the ACCEPt trial and other testing strategies on the prevalence of chlamydia infection over time
 - To estimate the impact of the strategies should they be carried out for the whole population

Individual based model

Model calibration and validation: data sources

- Sexual behaviour
 - ACCEPt baseline survey
 - Second Australian Study of Health and Relationships (ASHR2, Rissel et al. 2014)
 - British National Survey of Sexual Attitudes and Lifestyles, (Natsal-2, Althaus et al. 2012)
- Testing rate
 - ACCEPt data during trial
 - Medicare – Australian public medical insurance scheme that funds most chlamydia testing within Australia
- Duration of chlamydia infection, transmission probability, …
 - Published literature
 - Other modelling studies

Repeated chlamydia infection

- Could increase the incidence of serious adverse reproductive health outcomes such as pelvic inflammatory disease (PID), ectopic pregnancy, infertility
- In Australia, a cohort study on young women attending primary care clinics found 22% of those diagnosed with chlamydia had a repeat positive test within 12 months (Walker 2012)
- We are interested in two strategies that can reduce repeated chlamydia infection: retesting and partner treatment.

Retest index case

- Pros
 - Reduce transmission to partners
 - Detect repeat/persisting infection
- Cons
 - Loss to follow up
 - Susceptible again after treatment, if positive

Partner treatment

- Pros
 - Reduce transmission from partners
 - Detect undiagnosed infections in partners
- Cons
 - Difficult to do well
 - Affected by partnership splits
 - Negative consequence for relationships
Method

• A proportion of the modelled population is tested for chlamydia and treated annually according to preliminary data on the testing coverage achieved in ACCEPt.

• We investigate the reduction in chlamydia prevalence achieved through:
 • Retesting a proportion of individuals who were infected with chlamydia within 3 months of receiving treatment
 • Treating a proportion of the partners of infected individuals

Findings

• Both retesting and partner treatment would yield incremental reductions in chlamydia prevalence over simple screening of index cases.

• Retesting at around the rate achieved in ACCEPt is predicted to yield similar reductions in prevalence as would be achieved through partner treatment (in the absence of retesting).

• Partner treatment (with no retesting) at 60% is predicted to yield greater reductions in prevalence than retesting (with no partner treatment) at 60%.

Future work

• Our mathematical model will be used to investigate the potential population-level impact of chlamydia testing uptake, as achieved in ACCEPt, on chlamydia transmission in the Australian population.

• Other strategies to be considered
 • Increase clinic attendance/coverage
 • Changes to sexual behaviour, awareness
 • Different mix of testing and partner treatment rates

• Economic evaluations
 • Output from our model will inform an economic evaluation of ACCEPt to determine the cost-effectiveness of the chlamydia screening intervention.
The impact of screening on chlamydia transmission in Australia: a mathematical modelling study

References

