

The impact of screening on chlamydia transmission in Australia – a mathematical modelling study

Ben Hui, Jane Hocking, Nicola Low and David Regan On behalf of the ACCEPt investigator team

🔮 UNSW | 候 --

Model calibration and validation : data sources

- · Sexual behaviour
 - · ACCEPt baseline survey
 - · Second Australian Study of Health and Relationships (ASHR2, Rissel et al. 2014)
 - · British National Survey of Sexual Attitudes and Lifestyles, (Natsal-2, Althaus et al. 2012)
- · Testing rate
 - · ACCEPt data during trial
 - Medicare Australian public medical insurance scheme that funds most chlamydia testing within Australia
- Duration of chlamydia infection, transmission probability, ... Published literature
 - · Other modelling studies

Repeated chlamydia infection

· Could increase the incidence of serious adverse reproductive health outcomes such as pelvic inflammatory disease (PID), ectopic pregnancy, infertility

🔮 UNSW | 🌾

· In Australia, a cohort study on young women attending primary care clinics found 22% of those diagnosed with chlamydia had a repeat positive test within 12 months (Walker 2012)

· We are interested in two strategies that can reduce repeated chlamydia infection: retesting and partner treatment.

Reducing re-infection from current

Retest index case

• Pros

partners

- · Reduce transmission to partners
- Detect repeat/persisting
- infection
- Cons
 - · Loss to follow up · Susceptible again after treatment, if positive

Partner treatment

- Pros
 - · Reduce transmission from partners
 - · Detect undiagnosed infections in partners

🔮 UNSW | 🌾

- Cons
 - · Difficult to do well · Effected by partnership splits

relationships

- · Negative consequence for

= retest, r r = partier treatm

Retesting and partner treatment

👲 UNSW 🛛 🎸 -----

Findings

• Both retesting and partner treatment would yield incremental reductions in chlamydia prevalence over simple screening of index cases.

• Retesting at around the rate achieved in ACCEPt is predicted to yield similar reductions in prevalence as would be achieved through partner treatment (in the absence of retesting).

• Partner treatment (with no retesting) at 60% is predicted to yield greater reductions in prevalence than retesting (with no partner treatment) at 60%.

Future work

10

🔮 UNSW | 🎸

• Our mathematical model will be used to investigate the potential population-level impact of chlamydia testing uptake, as achieved in ACCEPt, on chlamydia transmission in the Australian population.

- Other strategies to be considered
 - Increase clinic attendance/coverage
 - · Changes to sexual behaviour, awareness
 - · Different mix of testing and partner treatment rates

Economic evaluations

 Output from our model will inform an economic evaluation of ACCEPt to determine the cost-effectiveness of the chlamydia screening intervention.

e impact of screening on ch athematical modelling study References

👲 UNSW 🛛 🐇 -----

n in Australia – a