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 Faces are singularly important stimuli for social primates  

 We effortlessly extract a range of  information about an 

individual from their face: identity, age, gender, health, 

attractiveness, emotional state, intent, etc. 

 It’s known that considerable neural resources (a “module”?) 

devoted to visual processing of  faces. 

 The brain is solving a tough problem. Understanding how 

it does it requires an understanding of  how the solution 

operates at different levels of  processing… 

Introduction 
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Aim of  the study: bridge computational model, 

perception, and neuronal representations of  faces 

 

Constructing a computational model 



Generative model of  faces 

 

• Valentine (1991) proposed “face-space”, where a face is a point in a 

multi-dimensional space the dimensions of which are measured in 

relation to an “average face”. Explains e.g. other-race effects. 

 

• The idea of a norm-based code can be combined with digital 

morphing to generate a generative model of faces: 

• Establish common key-points on a set of faces.  

• Faces are represented as vector of the key-point x & y 

values 

• Express all vectors relative to the average “face”  



The unusual suspects 

• Model based on images of Scottish policeman 

• 18 face exemplars generated by morphing “average face” into 

registration with a random key-point vectors (i.e. random locations in 

the multi-dimensional model “facespace”.   



 High dimensional space describing 

“what a representation cares about”, e.g. 

retinotopic location, colour, semantic 

category, etc. 

 Individual stimulus exemplars occupy 

points in representational space. 

Distances between exemplars describe 

their relationship. 

 Representational geometry is important 

because : 

• The nature of  the organization hints 

at why the brain might use this 

coding scheme (Carlson et al., 

2014a). 

• We can examine how information 

might be “read out” from the 

representation? (Carlson et al., 

2014b). 

Measuring representational 

geometry 
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The representational geometry of  

model faces 



Model face dissimilarity 

• Facespace 

model 

dissimilarity 

matrix (DSM) 

• Shows model 

difference 

between all 

possible face 

pairs 

• Color represents 

difference 

(Euclidean 

distance in 

facespace) 



Generative “face space” model 

“Flattened” Multidimensional scaling representation  



Generative model “face space” 

 

Distance represents model dissimilarity: close = similar 



Generative model “face space” 

 

Distance represents model dissimilarity: far = dissimilar 
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Aim of  the study: bridge computational model, 

perception, and neuronal representations of  faces 

 

Measuring perception 



Constructing perceptual model 

• Individual pairs of reference faces from the generative model vary in 

terms of perceptual similarity 

• Using the model, we can generate morphs between reference faces   
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Morphs between references 

Morphs between references 



Measuring distances in perceptual space 

Brother identification task: 

• Target face is an interpolated  morph between two reference faces 

• Target is presented flanked by two reference faces for three seconds 

• Subject’s task is choose which reference is more similar (i.e. who is the target’s 

brother?) 

• Measure performance varying for mixture morphs (e.g. 60% reference 1, 40% 

reference 2) 

Reference face #1 from 

generative model 

Reference face #2 from 

generative model 

Target “morph” 

between references 



Measuring distances in perceptual space 

Brother identification task measures human sensitivity to face pairs 

• If faces are highly dissimilar, there will be few confusions for the extreme morphs.   

• Steep psychometric function means faces are highly discriminable 



Measuring distances in perceptual space 

Brother identification task measures human sensitivity to face pairs 

• If faces are very similar, there will be more confusions between faces, even at the 

extremes.   

• Shallow psychometric function means faces are less discriminable 



• Shallow psychometric function = close in perceptual face space  

• Steep psychometric function = far in perceptual face space  

Measuring distances in perceptual 
space 



A non trivial experiment! 

• Psychometric functions for 153 pairwise combinations of faces!  

• 17 one hour testing sessions  (n = 7) 



Perceptual model of  faces 

• Perceptual 

dissimilarity 
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Perceptual “face space” 

“Flattened” Multidimensional scaling representation  



Perceptual “face space” 

 

Distance represents model dissimilarity: close = similar 



Perceptual “face space” 

 

Distance represents model dissimilarity: far = dissimilar 
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Linking model to perception 



 Representational similarity analysis (RSA; Kriegeskorte, 2008) 

 Non parametric correlations (Spearman) between DSM entries 

Bridging computational model and perception 



Bridging computational model and perception 

Spearman Rho = 0.49, p < 0.001 (bootstrap test) 

Good (albeit imperfect) correspondence between model and 

perception 



Bridging computational model and perception 

Spearman Rho = 0.49, p < 0.001 (bootstrap test) 

• Dissociation between physical (generative model) and perception 

• Differences can be used to study generative model features that are important 

for perceptual discrimination of faces  
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Measuring representational geometry of the brain 



Time resolved MEG decoding  
(Carlson et al., 2011) 

 Decoding done in sensor space (157 

axial gradiometers) using Linear 

Discriminant Analysis Sliding 

window decoding (10ms resolution) 

Use MVPA to measure 

the dissimilarity (i.e. 

decodability) between 

response patterns to 

stimuli as a function of 

time. 
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Stimulus 2 

Stimulus 1 

• Neural discriminability between 

faces on a moment to moment 

basis 

• Analysis done for all possible face 

pairs to recover time varying 

representational geometry 



Decodability as a function of  time  

 We can decode individual face exemplars from neuromagnetic 
recordings! 

 Onset accords with time for visual information to reach the cortex 

 Peak decoding 100ms after stimulus onset  

 

 

Average decodability for all possible 

comparisons 



Neural discriminability of  face pairs 

• Neural 

dissimilarity 

matrix (DSM) for 

time between 50 

and 150ms 

• Shows neural 

difference 

between all 

possible face pairs 

• Color represents 

difference in 

representational 

space 



Time varying MEG decoding 

• Neural 

dissimilarity 

matrix (DSM) 
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Time varying representational geometry of  faces 

“Flattened” Multidimensional scaling representation  
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Linking brain representation to model 



 Non parametric correlations (Spearman) between MEG and 
DSMs for each time point 

 Time varying correlation between model/perception and 
neural stimulus representation (significance FDR < 0.05) 

 

 

 

Bridging computational model, 

perception and the brain 



 Computation (physical) model corresponds well with MEG 

decodability early in time (~50ms post stimulus onset) 

Bridging computational (physical) model and neural 

representation of  the stimulus 
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Aim of  the study: bridge computational model, 

perception, and neuronal representations of  faces 

 

Linking brain representation to perception 



 Perception also corresponds well with MEG decodability early 

in time (~70ms post stimulus onset) 

Bridging perception and neural representation of  the 

stimulus 



Does the representation of  physical features 

precede perception? 



Does the representation of  physical features 

precede perception? 

 Compute the onset latency 

for individual participants 

 Non parametric Sign rank 

test for latency difference 

 Suggests representation 

emphasizing physical 

features of  faces precedes 

perceptual representation of  

face 



Summary/conclusions 

• Framework for studying the relationship between computational 

models, perception and neuronal representation for faces. 

• Analysis showed a correspondence between the generative model 

and perception 

• Future work could test alternative  models and work to determine model 

“features” are driving perception.  

• Analysis showed a correspondence between the generative 

model/perception and brain’s representation shortly after stimulus 

onset 

• Perceptual representation emerged following representation of 

physical features, suggesting the brain first represents physical face 

features and then by emphasizing (and de-emphasizing) features 

forms a perceptual representation. 



..and  thank you for your attention! 
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