

The emerging perceptual representation of faces decoded from human neuromagnetic recordings

Thomas A. Carlson & Steven Dakin

Introduction

- Faces are singularly important stimuli for social primates
- We effortlessly extract a range of information about an individual from their face: identity, age, gender, health, attractiveness, emotional state, intent, etc.
- It's known that considerable neural resources (a "module"?) devoted to visual processing of faces.
- The brain is solving a tough problem. Understanding how it does it requires an understanding of how the solution operates at different levels of processing...

Aim of the study: bridge computational model, perception, and neuronal representations of faces

Constructing a computational model

Generative model of faces

- Valentine (1991) proposed "face-space", where a face is a point in a multi-dimensional space the dimensions of which are measured in relation to an "average face". Explains e.g. other-race effects.
- The idea of a norm-based code can be combined with digital morphing to generate a generative model of faces:
 - Establish common key-points on a set of faces.
 - Faces are represented as vector of the key-point x & y values
 - Express all vectors relative to the average "face"

The unusual suspects

- Model based on images of Scottish policeman
- 18 face exemplars generated by morphing "average face" into registration with a random key-point vectors (i.e. random locations in the multi-dimensional model "facespace".

Measuring representational geometry

- High dimensional space describing "what a representation cares about", e.g. retinotopic location, colour, semantic category, etc.
- Individual stimulus exemplars occupy points in representational space.
- Distances between exemplars describe their relationship.
- Representational geometry is important because :
 - The nature of the organization hints at why the brain might use this coding scheme (Carlson et al., 2014a).
 - We can examine how information might be "read out" from the representation? (Carlson et al., 2014b).

Representational geometry

	boy	man	baby gir
boy	0.0	0.3	0.4
man	H	0.0	0.7
baby girl			0.0

Formally described using a dissimilarity matrix (distance in the space)

Representational geometry

- same
- different
- similar
- very different

The representational geometry of model faces

Model face dissimilarity

- Facespace model dissimilarity matrix (DSM)
- Shows model difference between all possible face pairs
- Color represents difference (Euclidean distance in facespace)

Generative "face space" model

"Flattened" Multidimensional scaling representation

Generative model "face space"

Distance represents model dissimilarity: close = similar

Generative model "face space"

Distance represents model dissimilarity: far = dissimilar

Aim of the study: bridge computational model, perception, and neuronal representations of faces

Measuring perception

Constructing perceptual model

"similar"

Morphs between references

'different"

Morphs between references

- Individual pairs of reference faces from the generative model vary in terms of perceptual similarity
- Using the model, we can generate morphs between reference faces

Reference face #1 from generative model

Target "morph" between references

Reference face #2 from generative model

Brother identification task:

- Target face is an interpolated morph between two reference faces
- Target is presented flanked by two reference faces for three seconds
- Subject's task is choose which reference is more similar (i.e. who is the target's brother?)
- Measure performance varying for mixture morphs (e.g. 60% reference 1, 40% reference 2)

Brother identification task measures human sensitivity to face pairs

- If faces are highly dissimilar, there will be few confusions for the extreme morphs.
- Steep psychometric function means faces are highly discriminable

Brother identification task measures human sensitivity to face pairs

- If faces are very similar, there will be more confusions between faces, even at the extremes.
- Shallow psychometric function means faces are less discriminable

- Shallow psychometric function = close in perceptual face space
- Steep psychometric function = far in perceptual face space

A non trivial experiment!

- Psychometric functions for 153 pairwise combinations of faces!
- 17 one hour testing sessions (n = 7)

Perceptual model of faces

- Perceptual dissimilarity matrix (DSM)
- Shows
 perceptual
 difference
 between all
 possible face
 pairs
- Color represents difference/dista nce in perceptual space

Perceptual "face space"

"Flattened" Multidimensional scaling representation

Perceptual "face space"

Distance represents model dissimilarity: close = similar

Perceptual "face space"

Distance represents model dissimilarity: far = dissimilar

Aim of the study: bridge computational model, perception, and neuronal representations of faces

Linking model to perception

Bridging computational model and perception

- Representational similarity analysis (RSA; Kriegeskorte, 2008)
- Non parametric correlations (Spearman) between DSM entries

Bridging computational model and perception

Spearman Rho = 0.49, p < 0.001 (bootstrap test)

Good (albeit imperfect) correspondence between model and perception

Bridging computational model and perception

Spearman Rho = 0.49, p < 0.001 (bootstrap test)

- Dissociation between physical (generative model) and perception
- Differences can be used to study generative model features that are important for perceptual discrimination of faces

Aim of the study: bridge computational model, perception, and neuronal representations of faces

Measuring representational geometry of the brain

Time resolved MEG decoding

(Carlson et al., 2011)

Use MVPA to measure the dissimilarity (i.e. decodability) between response patterns to stimuli as a function of time.

- Decoding done in sensor space (157 axial gradiometers) using Linear
 Discriminant Analysis Sliding
 window decoding (10ms resolution)
- Neural discriminability between faces on a moment to moment basis
- Analysis done for all possible face pairs to recover time varying representational geometry

Decodability as a function of time

Average decodability for all possible

- We can decode individual face exemplars from neuromagnetic recordings!
- Onset accords with time for visual information to reach the cortex
- Peak decoding 100ms after stimulus onset

Neural discriminability of face pairs

- Neural dissimilarity matrix (DSM) for time between 50 and 150ms
- Shows neural difference between all possible face pairs
- Color represents difference in representational space

Time varying MEG decoding

- Neural dissimilarity matrix (DSM)
- Shows neural difference between all possible face pairs
- Color represents difference/dista nce

Time varying representational geometry of faces

"Flattened" Multidimensional scaling representation

Aim of the study: bridge computational model, perception, and neuronal representations of faces

Linking brain representation to model

Bridging computational model, perception and the brain

- Non parametric correlations (Spearman) between MEG and DSMs for each time point
- Time varying correlation between model/perception and neural stimulus representation (significance FDR < 0.05)

Bridging computational (physical) model and neural representation of the stimulus

 Computation (physical) model corresponds well with MEG decodability early in time (~50ms post stimulus onset) Aim of the study: bridge computational model, perception, and neuronal representations of faces

Linking brain representation to perception

Bridging perception and neural representation of the stimulus

 Perception also corresponds well with MEG decodability early in time (~70ms post stimulus onset)

Does the representation of physical features precede perception?

Does the representation of physical features precede perception?

- Compute the onset latency for individual participants
- Non parametric Sign rank test for latency difference
- Suggests representation emphasizing physical features of faces precedes perceptual representation of face

Summary/conclusions

- Framework for studying the relationship between computational models, perception and neuronal representation for faces.
- Analysis showed a correspondence between the generative model and perception
 - Future work could test alternative models and work to determine model "features" are driving perception.
- Analysis showed a correspondence between the generative model/perception and brain's representation shortly after stimulus onset
- Perceptual representation emerged following representation of physical features, suggesting the brain first represents physical face features and then by emphasizing (and de-emphasizing) features forms a perceptual representation.

Thanks to

Steven Dakin and the many students that assisted in data collection

Australian Government

Australian Research Council

Funding provided by the ARC

..and thank you for your attention!