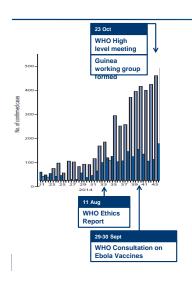
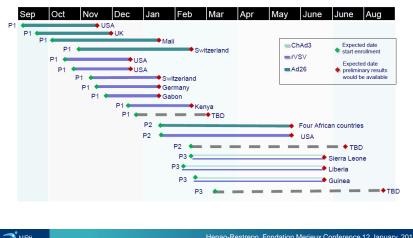


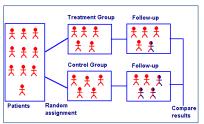
The Ebola Vaccine Experience: Cluster Randomisation and Implications for HCV Trial Design

Professor John-Arne Røttingen, MD PhD MSc MPA Interim CEO


CEPI – Coalition for Epidemic Preparedness Innovations c/o Norwegian Institute of Public Health


Challenging to predict outbreak curve and future needs

Predictions


WHO: 20 000 before Nov-14 CDC: 500'-1.4 mill before Jan-15

16-18 clinical trials in a year

Henao-Restrepo, Fondation Merieux Conference 12 January, 2015

Randomized controlled trial (RCT) is the gold-standard for clinical vaccine trials

- Scientific validity
 - Causality assessment
 - Balancing confounding factors
 - Minimizing bias
 - Regulatory requirements
- Fair subject selection

Is an RCT optimal in outbreak settings?

What is the ideal study design?

Randomized controlled trial

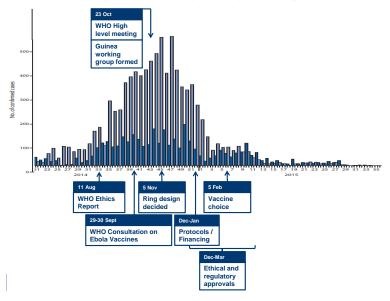
- Classical clinical trial
- Placebo group
- Large sample size

Stepped wedge

- Secures vaccination of all participants
- Gradual introduction of vaccine; unvaccinated serve as control
- Large sample size

Ring vaccination

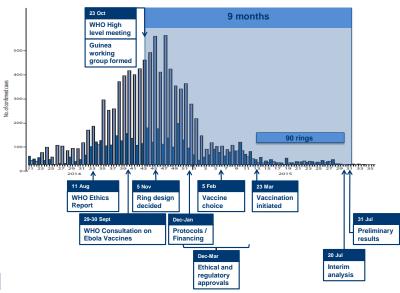
- Smallpox eradication
- Secures vaccination of all participants
- Delayed vaccination of half of rings
- Lower sample size due to high attack rate



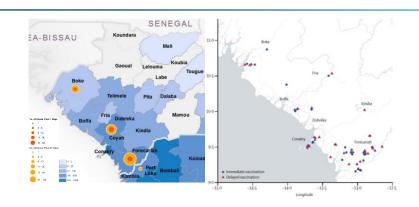


Planning an efficacy study during an epidemic

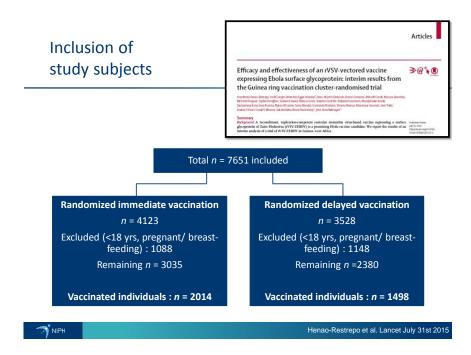
Guinea vaccine trial working group *Ebola ça suffit!* Ring vaccination



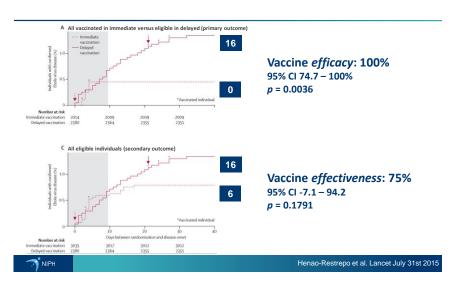
Advantages with ring vaccination - reactive cRCT vs proactive iRCT


- Prioritize vaccine to those at highest risk
- Distributive justice with randomization
- Experimental comparison of vaccinated and non-vaccinated
- All participants receive vaccine (3 weeks delay for control group)
- Timely results attack rate at the level of the ring is higher (higher risk individuals)
- Contact tracing as recruitment facilitates active community engagement

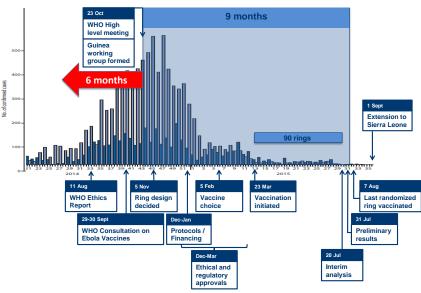
Planning an efficacy study during an epidemic



Trial design follows the outbreak geographically



Each ring visited at days 0, 3, 14, 21, 42, 63, and 84 post-vaccination to document the potential occurrence of any serious adverse events


Apps.who.int
Henao-Restrepo et al. Lancet July 31st 2015

Interim results for 90 rings per 20th July 2015

Planning an efficacy study during an epidemic

What can this teach us regarding treatment as prevention (TasP) for Hepatitis C in PWIDs?

Experience with TasP for HIV

- Treatment as prevention (TasP) for the global elimination of HIV
- WHO and UNAIDS
 - elimination threshold at one new HIV infection per 1000 individuals per year
 - diagnosing 90% of the individuals currently infected with HIV
 - treating 90% of the diagnosed
 - achieving viral suppression in 90% of treated individuals

TasP for HIV

- effect on transmission on individual level

Landmark clinical trial HPTN 052 (Cohen et al, 2011)

- 1763 couples in which one partner was HIV-1-positive and the other was HIV-1-negative
- Intervention: antiretroviral therapy immediately (early therapy) vs antiretroviral therapy after a decline in the CD4 count or the onset of HIV-1-related symptoms (delayed therapy).
 - The primary prevention end point was linked HIV-1 transmission in HIV-1-negative partners
- **Results**: treated individuals are less likely than untreated individuals to transmit HIV to their sex partners
 - Treating the HIV-infected partner in a discordant couple (ie, a couple in which only one partner is infected) was 96% effective in preventing HIV infection.

TasP for HIV

- effect on transmission on individual level

Prospective cohort studies

- Rural KwaZulu-Natal, South Africa (Tanser et al, Science 2013)
 - Follow up of 16,667 individuals HIV-uninfected at baseline, observing individual HIV seroconversions over the period 2004 to 2011.
 - Results: individual HIV acquisition risk declined significantly with increasing ART coverage in the surrounding local community.
- FSW, Kenya (McClelland et al, AIDS 2015)
 - Association between community ART coverage and FSW's risk of becoming HIV infected
 - Increasing general population ART coverage was associated with lower HIV incidence in FSWs.

TasP for HIV -effect on transmission on population level

- ART is effective at preventing transmission in stable heterosexual couples
 - Not clear whether ART will be similarly effective at preventing HIV transmission at the population level
- Currently, four clinical trials are evaluating the effectiveness of TasP on reducing incidence
 - Interim results from the different studies are conflicting (International AIDS Conference, Durban 2016)

TasP for HIV -effect on transmission on population level

Modelling (Okano et al, Lancet 2016)

- Population-based study of the Danish HIV epidemic in men who have sex with men
- TasP can substantially reduce a country's HIV epidemic, and bring it close to elimination under optimal conditions: very high treatment coverage, and exceptionally high (98%) viral suppression rate.
- Unless these extremely challenging conditions can be met in sub-Saharan Africa, the WHO's global elimination strategy is unlikely to succeed.

TasP for HIV -effect on transmission on population level

Modelling

- The contribution of ART and reductions in injecting risk for reducing HIV incidence in PWID (Fraser et al, Int J Epidemiol, 2016)
 - Projections suggest
 - Decrease in injecting risk reduced HIV incidence by 76% (63-85%) and ART further reduced HIV incidence by 8% (2-19%), or on its own by 3% (-34 37%)
 - Conclusion
 - Observed declines in HIV incidence in Vancouver between 1996 and 2007 should be seen as a success for intensive harm reduction, whereas ART probably played a small role.

What can this teach us regarding (early vs delayed) treatment as prevention (TasP) for Hepatitis C in PWIDs?

Impact of HCV treatment on population level -evidence of effect

- Mathematical modelling
 - Numerous epidemiological modelling studies in different target groups (PWID, prisons, msm) support decrease in population prevalence through treatment as prevention (TasP)
- However, no empirical data to support effect of treatment as prevention (TasP) on population prevalence

Need empirical evidence to demonstrate that early treatment as prevention (eTasP) works for Hepatitis C in PWIDs—

Models not enough given implementation and adherence challenges

Possible study designs for eTasP for HCV

- iRCT early versus delayed treatment
 - Not possible to measure effect on population level de facto one cohort
- Cohort treat as many as possible early
 - Measure effect on population level by interrupted time series (ITS) design
- Controlled interrupted time series (cITS)
 - Compare cities with and without early treatment
- cRCT: identify clusters/networks of active PWID
 - Randomize clusters to early vs delayed treatment
 - Measure incidence in both groups

NIPH

Summary

- Ebola
 - Community based effectiveness trials can be conducted under difficult circumstances and demonstrate population benefits
- HIV TasP
 - Effects on individual level demonstrated in close follow up
 - Effects on population level incidence (prevention)
 - Conflicting results from models
 - Lack of empirical data interim results not so promising
- HCV eTasP
 - Models support decrease in population incidence
 - Need for multi centre trials to establish empirical evidence for effect on population level

