## Leveraging the Lessons Learned from AP1000 Qualification Testing



## Solenoid Valve Fundamentals

AP1000 Challenges & Solutions

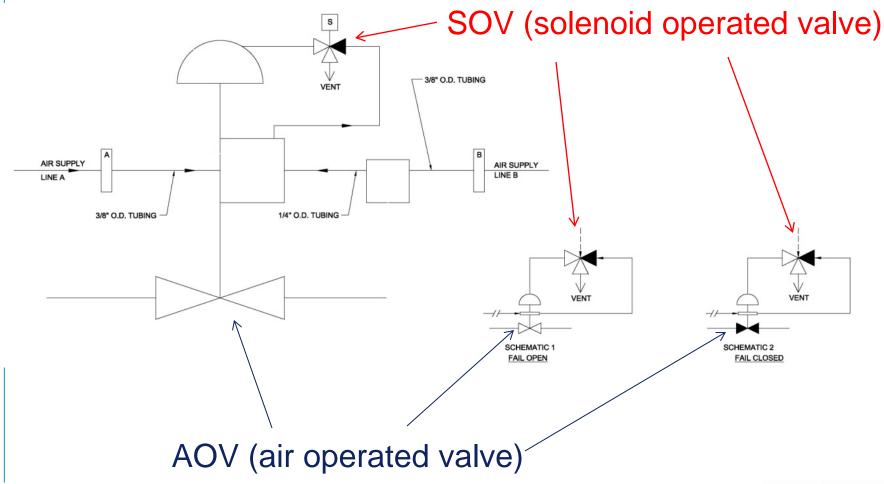
**Evolution of ASCO Nuclear Solenoids** 

**Qualification Lessons** 

Next Step






## Function of Solenoids in Air Operated Valve

- The solenoid valve is an electromechanical device that converts electric control signal converted to mechanical energy to actuate the AOV
- The solenoid valve is located between control instrumentation and actuator
- The solenoid valve is a specific safety related device
- The solenoid valve initiates the safety function by venting air from the actuator





#### **SOVs on Main AOV**







# Operational testing of Air Operated Valve with Solenoid Valve

Solenoid Valve







Solenoid Valve Fundamentals AP1000 Challenges & Solutions **Evolution of ASCO Nuclear Solenoids Qualification Lessons Next Step** 





## AP1000 Solenoid Valve Challenges

#### **AP 1000 Requirements**

- All solenoid valves require suppression diode
- 200 C rated lead wire 30 ft lead wire
- Coil must be removable
- Non 1E and 1E different coating to distinguish
- Increased seismic loads

#### **ASCO NT solution**

- Integrate diode into one piece molded coil
- PEEK lead wire from NS qualification
- Red Hat II with molded in QDC
- Red Hat II coils Black- 1E
   Green non-1E
- Stronger mounting bracket





## AP1000 Qualification Challenges

#### **AP1000**

- Rapid LOCA curves
- High HELB Temps
- Chemical Spray variation
- Mission Time w margin vs actual time

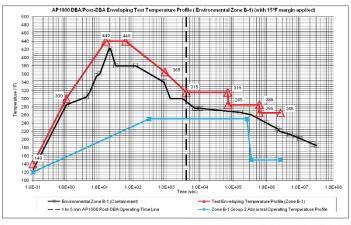
#### **Solutions**

- Labs can't meet
  - Monitor component temps for Thermal lag
- Can materials function
  - Screening / Simulation
- Verify with customer &
   Lab every parameter
- Understand safety function

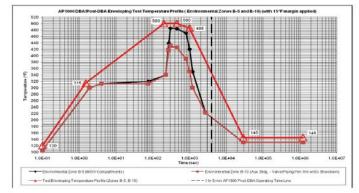




#### NT Qualification Levels


#### LOCA:

 450°F(232°C), Zone 1 profile.


#### HELB:

 500°F(260°C) Zone 5 and zone10 profile













## SOV – NT 8316 Safety Related AP1000



- NT 8316 is used for safety related (1E) on AP 1000
- Quick Disconnect (QDC)
- RHII Encapsulated Coil
- Internal Diode
- High Temp Radiation Resistant elastomers
- Zero Minimum Pressure





#### NUCLEAR VALVE EVOLUTION



Developed 1978
First SOV in Nuclear for Safety

- EPDM/FKM elastomers
- Non-molded varnish
- impregnated coils.



#### Developed 1995

Harsh environment, long life

- Special elastomeric compound developed by ASCO
- Better radiation resistance, longer thermal life
- Increase resistance to high temperatures

Developed 2011

Digital & more features (AP1000)

- Red Hat II Coil with built in diode for digital applications.
- Quick Disconnect
- Zero Minimum PSID
- PEEK Leads



Solenoid Valve Fundamentals AP1000 Challenges & Solutions Leveraging to NT Line Extension **Qualification Lessons Next Step** 





#### NT line extension

- Leveraged lessons from NT AP1000 testing
  - Molded coil
  - Internal diode
  - QDC
  - Reverse flow NT8316 ( 3/8 to 1 inch)8320 -1/4 inch
  - Increased qualified thermal life









### NP vs NT Qualification Levels

| Comparison items                              |    | NP (AQR 67368)                     | NT (ATR 35115-3)                                                     |
|-----------------------------------------------|----|------------------------------------|----------------------------------------------------------------------|
| Elastomer                                     |    | EPDM or Viton                      | Gamma +                                                              |
| Coil                                          | DC | RHI w/ enclosure                   | RH II w/ diode                                                       |
|                                               | AC | RHI w/ enclosure                   | RHII                                                                 |
| QDC option                                    |    | N/A                                | Yes                                                                  |
| Thermal aging for qualify life at 50C ambient |    | Coil 2 year, valve 4 & 7 years     | 15 years                                                             |
| Radiation (total)                             |    | 167 Mrads                          | 32 Mrads for HELB;<br>170 Mrads for LOCA                             |
| Vibration & Seismic                           |    | 15g input                          | 6.6g input -RIM (>50G response)                                      |
| HELB & LOCA                                   |    | 30 days; Double peak,<br>Max 420F, | HELB: 14 days; max 500F,<br>LOCA: 30 days; Double<br>peak, Max 440F, |





#### NUCLEAR VALVE EVOLUTION





NT8316

Developed 2011

Digital & more feature (AP1000)

- Red Hat II Coil with built in diode for digital applications.
- Quick Disconnect
- Zero Minimum PSID
- PEEK Leads



NT8316 & NT8320 Developed 2014

- Red Hat II Coil with built in diode for digital applications
- 8316 -3/8-1 & 8320 qualified to increased levels
- Quick Disconnect
- Reverse flow
- Peek or Silicone leads

15

#### NP G Series Available 2016

- Extended to NP series
- Red Hat II Coil with built in diode for digital applications
- Coils to increased levels
- Quick Disconnect
- Peek or Silicone leads



## NT line Extension applied to NP & NS valves

#### **NT Upgrade**

- 3 way Std Flow
  - NT 8320
- 3 way Hi Flow
  - NT8316

#### **NP RH II**

- 3 way
  - NP8300G
  - NP8321G
- 4-Way
  - NP8342G
  - NP8344G





Solenoid Valve Fundamentals AP1000 Challenges & Solutions **Evolution of ASCO Nuclear Solenoids Qualification Lessons Next Step** 





#### Lessons Learned Solenoid Valves

- Leverage existing knowledge base
  - Red Hat II Commercial line
  - Peek Lead Wire NS
  - Gamma Plus Elastomers NS
  - Don't reinvent the wheel use qualified materials
- Prequalification Screening
  - Establish Thermal & Radiation limits
    - diodes, elastomers, coils, lead wires
  - Verify designs prior to qual testing
    - Try several variations of materials / processes





#### Other EQ lessons learned

- Back up test samples
  - Run in parallel 2 phases behind –
- Separate options/variations
  - Increases sample size but minimizes risk
- Separate zones aging isn't cumulative across zones
  - Zone 1 equipment doesn't have to work in Zone 5
- Age in phases with sacrificial parts to establish limits
  - Thermal spread out into 5 year increments /wear aging
  - Radiation- phased based on performance of sac parts
  - Wear- integrate into thermal aging





## **Questions**





