Efflux pumps in *Neisseria gonorrhoeae*: cause of resistance and targets for therapeutics/vaccines?

William M. Shafer, Ph.D.
Emory University School of Medicine
Emory Antibiotic Resistance Center
Atlanta VA Medical Center

No financial disclosures or conflicts

History of Resistance & Shrinking Pipeline

Unemo and Shafer, 2014

To Effectively Counteract Resistance With New Drug Development, It Is Important To Understand Mechanisms of Resistance

N. gonorrhoeae Efflux Pumps

Unemo and Shafer, 2014
For ceftriaxone resistance: mosaic PBP2 and overproduction of the MtrCDE efflux pump.

The mtrCDE locus

![Diagram of mtrCDE locus with annotations]

Mtr Efflux Pump-Deficient Gonococci Have a Survival Defect in a Murine Model of Lower Genital Tract In Females (Jerse et al. 2003)

![Graph showing mean duration of recovery with Log CFU and day post-inoculation]

Promoter mutations: High R
MtrR mutations: Intermediate R

Cis- and Trans-Acting Mutations That Increase Resistance

![Diagram showing cis- and trans-acting mutations]

Loss of the MtrCDE Efflux Pump Increases Gonococcal Susceptibility to Antimicrobials

Important β-Lactams Previously or Currently Used to Treat Gonorrhea: Clinically Resistant Strains of Historical Importance

![Diagram showing β-lactams and isolates]
A Single Nucleotide Change Can Account for the Mtr Phenotype in High Level Resistant Strains

Western Blot Showing Over-Production of MtrCDE

The Emerging Threat of Untreatable Gonococcal Infection

Can We Exploit the MtrCDE Efflux Pump In Efforts to Counteract Antibiotic Resistance Expressed by Gonococci?

Comparison of MtrE3-467 Immunization/Challenge Results Using CT versus CpG as the Adjuvant

Conclusions

• The MtrCDE efflux pump is an important part of how gonococci develop resistance to antibiotics
• This pump is also important for bacterial survival during an experimental infection
• Expression of the mtrCDE operon is regulated by cis- and trans-acting factors
• Propose that the MtrCDE efflux is a target for new drug discovery or an antigen for a future vaccine
Special Thanks To Collaborators

• Ann Jerse Ph.D. and her lab group (Bethesda, USA): all mouse work and antibiotic resistance collaborations for nearly 15 years.
• Magnus Unemo Ph.D. and Daniel Golparian (Orebro, SE): clinical significance of mtr mutations.
• Edward Yu Ph.D. and his lab group (Ames, USA): structural biology of Mtr efflux pump proteins MtrD and MtrE and EPIs.
• Fred Sparling M.D. (Chapel Hill, USA)

Many thanks to the NIH and VA for funding support.