Resurgence of syphilis among HIV-infected men who have sex with men attending STI clinics in the Netherlands

Authors: van Aar F1,, den Daas C\textast}1,, van der Sande MAB1,2,, de Vries HJC1,2,3,, van Benthem BHB1,2,3,

1. Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
2. Julius Centre for Health Sciences and Primary Care, University Medical Centre, Utrecht, the Netherlands
3. STI Outpatient Clinic, Public Health Service of Amsterdam (GGD Amsterdam), Amsterdam, The Netherlands
4. Department of Dermatology, Academic Medical Centre (AMC), University of Amsterdam, Amsterdam, The Netherlands
5. Centre for Infection and Immunology Amsterdam (CINIMA), Academic Medical Centre (AMC), University of Amsterdam, Amsterdam, The Netherlands

* These authors contributed equally to this work.
Corresponding author: Fleur van Aar, fleur.van.aar@rivm.nl

Background

- While syphilis has re-emerged in a number of countries worldwide over the past decade, the infectious syphilis (syphilis) rate among STI clinic attendees continued to decrease in the Netherlands.
- Men who have sex with men (MSM) account for approximately 90\% of all syphilis cases diagnosed at STI clinics each year.
- In 2014, the absolute number of syphilis diagnoses among MSM increased by 19\% over 2013.

Objectives:

- To determine to what extent the observed increase in syphilis among MSM was geographically clustered or represented an overall increase in the Netherlands.
- To explore syphilis trends among MSM by HIV status between 2007 and 2014.

Methods

- We analysed the Dutch STI surveillance data, which contains socio-demographic, behavioural and clinical data from all 26 STI clinics in the Netherlands.
- The clients’ four-digit postal-codes were used to perform cluster analysis on municipality level (SaTScan software).
- We assumed a Poisson-distribution for the number of cases in each location. Space-time scan statistic was used to identify clusters.

Results

1. Geographical clusters
We identified two significant clusters in space and time (Figure 1).

Cluster 1:
- located in Amsterdam between January 2011 and December 2014 (n = 834, P < 0.001).
- the median age was 41.59; 6\% was known HIV-infected, 36\% was notified for an STI, 62.4\% reported STI related symptoms and 53.7\% originated from the Netherlands.

Cluster 2:
- located in the south-eastern region between July 2009 and September 2010 (n = 10, P < 0.001).
- 9 out of 10 were young (median age: 23) migrant male sex workers.

2. Syphilis positivity trends by HIV status
Regardless of HIV status, the number of MSM tested for syphilis increased by 177\% since 2007 (Table 1).
- HIV-negative MSM: the syphilis positivity rate decreased from 2.8\% in 2007 to 1.4\% in 2011 and stabilised thereafter (Figure 2).
- Known HIV-infected MSM: the syphilis positivity rate decreased from 12.3\% in 2007 to 4.5\% in 2011, followed by an increasing rate up to 6.6\% in 2014. A similar trend was observed among MSM newly diagnosed with HIV (Figure 2).

Cluster analysis should be a standard STI surveillance procedure in order to efficiently target and to timely initiate or enhance prevention activities in the Netherlands.

Conclusion

- We observed a resurgence of syphilis among HIV-infected MSM in recent years, but not among HIV-negative MSM.
- Our findings imply that currently, syphilis prevention activities should focus on (HIV-infected) MSM in Amsterdam.
- Cluster analysis should be a standard STI surveillance procedure in order to efficiently target and to timely initiate or enhance prevention activities in the Netherlands.

Table 1. The number of (positive) infectious syphilis tests among MSM attending the STI clinics in the Netherlands, by HIV status between 2007 and 2014.

<table>
<thead>
<tr>
<th>Year</th>
<th>Known HIV-infected</th>
<th>HIV-negative</th>
<th>Newly HIV-infected</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>tests syphilis</td>
<td>tests syphilis</td>
<td>tests syphilis</td>
</tr>
<tr>
<td>2007</td>
<td>1,361</td>
<td>168</td>
<td>9,429</td>
</tr>
<tr>
<td>2008</td>
<td>2,099</td>
<td>214</td>
<td>11,319</td>
</tr>
<tr>
<td>2009</td>
<td>2,505</td>
<td>189</td>
<td>13,500</td>
</tr>
<tr>
<td>2010</td>
<td>2,984</td>
<td>160</td>
<td>16,256</td>
</tr>
<tr>
<td>2011</td>
<td>3,696</td>
<td>166</td>
<td>17,717</td>
</tr>
<tr>
<td>2012</td>
<td>4,197</td>
<td>208</td>
<td>20,124</td>
</tr>
<tr>
<td>2013</td>
<td>4,098</td>
<td>236</td>
<td>23,072</td>
</tr>
<tr>
<td>2014</td>
<td>4,240</td>
<td>281</td>
<td>25,413</td>
</tr>
</tbody>
</table>

Figure 1. The average annual incidence among MSM per 100,000 general population by geographic location and the significant clusters in the period between 2007 and 2014.

Figure 2. The positivity rate and 95\% confidence intervals of infectious syphilis among MSM by HIV-status between 2007 and 2014.