Impact of antiretroviral therapy on HBV-related liver disease

Chloe L. Thio, MD
Professor of Medicine
Johns Hopkins University
Baltimore, MD USA

Outline

• Background - Liver disease prior to ART
• ART and HBV virological outcomes
• ART and HBV liver disease outcomes
• Can we cure HBV?
• Summary

Worldwide HBsAg and HIV prevalence, 2006

UNAIDS 2006
HIV increases liver mortality from CHB prior to HAART

- 5293 men (326 HBsAg+ baseline) followed 10.5 years
- RR of liver death 17.7 in coinfected vs. only HBsAg+

Liver-related mortality is higher from HBV than from HCV in the MACS

- 337 men with CHB and 343 with CHC at study entry in MACS
- Outcome: liver-related mortality (LRM) expressed as rate/1000 PYs

Multivariate analysis of LRM in HIV-coinfected

<table>
<thead>
<tr>
<th></th>
<th>IRR</th>
<th>95% CI</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hepatitis status (HCV ref)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HBV</td>
<td>2.0</td>
<td>1.0-1.9</td>
<td>0.047</td>
</tr>
<tr>
<td>Age/10 year increase</td>
<td>1.6</td>
<td>1.1-2.3</td>
<td>0.009</td>
</tr>
<tr>
<td>Most recent CD4 count (>350 ref)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200-350</td>
<td>7.1</td>
<td>2.4-20.1</td>
<td><0.001</td>
</tr>
<tr>
<td><200</td>
<td>16.3</td>
<td>6.2-42.8</td>
<td><0.001</td>
</tr>
<tr>
<td>HAART</td>
<td>0.7</td>
<td>0.3-1.5</td>
<td>NS</td>
</tr>
</tbody>
</table>

Also adjusted for alcohol, recruitment period, race
Liver fibrosis advanced in HIV-HBV co-infection with higher HBV DNA in Nigeria

- Cross sectional study of 232 HIV+ and 93 HIV-HBV patients in Nigeria
- Transient elastography prior to HAART

HBV DNA >4000 IU/ml in HIV-HBV co-infected Nigerian subjects prior to HIV therapy

ART AND HBV VIROLOGICAL OUTCOMES
Meta-analysis of TDF response in 550 HIV-HBV co-infected subjects

![Graph showing TDF response over time for HIV-HBV co-infected subjects with HBeAg positive and negative.](image)

Treatment response in 165 HIV-HBV co-infected subjects with median 2.8 yrs treatment

![Bar graph showing proportion of participants with undetectable HBV DNA by regimen.](image)

Matthews et al CID 2013 56(9):e87-94

Factors associated with detectable HBV DNA in those with HIV RNA < 400 cp/ml

<table>
<thead>
<tr>
<th>Factor</th>
<th>OR</th>
<th>95% CI</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (per 10 yrs)</td>
<td>0.90</td>
<td>0.48, 1.69</td>
<td>0.74</td>
</tr>
<tr>
<td>HBeAg positive</td>
<td>12.06</td>
<td>3.73, 38.98</td>
<td><0.0001</td>
</tr>
<tr>
<td><95% adherent</td>
<td>2.52</td>
<td>1.16, 5.48</td>
<td>0.02</td>
</tr>
<tr>
<td>HAART <2 yrs</td>
<td>2.64</td>
<td>1.06, 6.54</td>
<td>0.04</td>
</tr>
<tr>
<td>CD4 < 200 cells/mm³</td>
<td>2.47</td>
<td>1.06, 5.73</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Matthews et al CID 2013 56(9):e87-94
Response to TDF in multinational ACTG studies: 5175 and 5208

HBsAg kinetics in 104 HIV-HBV subjects on TDF-based ART

66 HBeAg+
- Baseline sAg 4.6 log IU/ml
- 2.2 log decline yr 6
- 5 HBsAg loss

38 HBeAg-
- Baseline sAg 2.8 log IU/ml
- 0.6 log decline yr 6
- 3 HBsAg loss

ART AND HBV LIVER DISEASE
Incidence of cirrhosis in HIV-HBV on TDF-based HAART is low

- 508 Spanish HIV-hepatitis non-cirrhotic patients
- Two TEs 2.6 ± 1.0 yrs apart
- 54 (10.6%) developed cirrhosis
- 1/24 (4.2%) with HBV

Multivariable analysis for risk of developing cirrhosis adjusted for baseline factors including TE

<table>
<thead>
<tr>
<th></th>
<th>OR</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIV-HCV with SVR</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>HIV-HCV</td>
<td>3.73</td>
<td>0.04</td>
</tr>
<tr>
<td>HIV-HBV</td>
<td>0.69</td>
<td>0.81</td>
</tr>
</tbody>
</table>

Tuma et al, AVT 2010 15:881-6

Liver decompensation-free survival in 79 HIV-HBV co-infected subjects

- 97% on HBV-active ART
- 45.7% HBeAg+
- Median f/u 35 months
- 11 (15%) cirrhosis baseline
- 8 (10%) with liver decompensation
 - 7 cirrhosis baseline

Martin-Carbonero et al, AIDS 2011; 25:73-79

Liver disease progression by TE

- 71/79 with two TE over median time of 40.1 mos
- Median TE scores stable
- Proportion with no or mild fibrosis increased from 47.8% to 64.7%
- 6 (8.4%) with increase in fibrosis stage
- Limitation: no control group

Martin-Carbonero et al, AIDS 2011; 25:73-79
Fibrosis progression in 184 French HIV-HBV patients on TDF

- Fibrosis measured by Fibrometer every 12 mos
- Median 1u 29.5 mos
- 115 (63%) <F4 prior to TDF
- 12 (10.4%) with incident F4 (4.5/100 PYs) after median of 11.2 months

Change in mean Fibrometer during TDF treatment

Factors associated with increase in Fibrometer to F3-F4

<table>
<thead>
<tr>
<th>Factor</th>
<th>HR</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCV serology positive</td>
<td>3.6</td>
<td>1.3-9.8</td>
</tr>
<tr>
<td>Age >40.6 yrs</td>
<td>2.9</td>
<td>1.0-5.1</td>
</tr>
<tr>
<td>>4 glasses alcohol/day</td>
<td>3.1</td>
<td>1.4-6.9</td>
</tr>
<tr>
<td>AIDS defining event</td>
<td>2.5</td>
<td>1.1-5.6</td>
</tr>
<tr>
<td>GGT flare >50 IU/ml</td>
<td>2.6</td>
<td>1.2-5.7</td>
</tr>
<tr>
<td>CD4 >350 cells/mm³</td>
<td>0.3</td>
<td>0.2-0.7</td>
</tr>
</tbody>
</table>

Boyd et al, AVT 2010 15:963
Prevalence of elastography-defined liver fibrosis (>9.3 kPa) and cirrhosis (≥12.3 kPa) among Ugandans

APRI improves with HAART in HIV-hepatitis co-infected

CXCL10 elevated in HIV-HBV co-infected patients on ART

- Thai HIV-HBV co-infected subjects vs HBV monoinfected or uninfected
- Prior to ART: LPS, sCD14, CXCL10, CCL2 higher in co-infected
- With ART: CXCL10 declined but remained elevated
- In vitro, LPS and IFN-γ synergistically increased CXCL10
- In other studies, CXCL10 associated with hepatic flares (Crane et al, JID 2009; 199:974–81)

Crane et al, JID spub March 2014
CAN WE CURE HBV?

Types of HBV cure

• Functional cure (akin to SVR in HCV)
 – Maintain undetectable HBV DNA off therapy
 – Ideally anti-HBs+
• Eradication (complete) cure
 – Eliminate cccDNA

Barriers to cure

• cccDNA
 – Stable intranuclear form that is transcription template
 – Not substantially affected by current anti-virals (1 log reduction)
 – Difficult to eradicate even with natural recovery
• Functional cure is possible
 – anti-HBs in 5% on long-term anti-virals
Drug targets in HBV replication cycle

Virological approaches

- Block entry-
 - Myrcludex B
- Silence cccDNA
- Endonucleases to cleave cccDNA
- HBV capsid inhibitor - destabilizes capsid assembly
- siRNA targeted to viral mRNA
 - Li et al. Cell Biochem Biophys 2014 Feb;
 - Wooddell et al. Mol Ther 2013 21:973
- RNase H inhibitors
- Sirtuin 1 inhibitors

Myrcludex B inhibits HBV replication in early but not chronic HBV in humanized mice

Virological approaches

- Block entry-
 - Myrcludex B
- Silence cccDNA
- Endonucleases to cleave cccDNA
- HBV capsid inhibitor - destabilizes capsid assembly
- siRNA targeted to viral mRNA
 - Li et al. Cell Biochem Biophys 2014 Feb;
 - Wooddell et al. Mol Ther 2013 21:973
- RNase H inhibitors
- Sirtuin 1 inhibitors

Myrcludex B inhibits HBV replication in early but not chronic HBV in humanized mice
Immunological approaches

- TLR7 agonist
 - Leads to development of anti-HBs in woodchuck model (Menne et al., J Hepatol 2011)
 - In chimps, prolonged suppression of HBV DNA (Lanford et al., Gastro 2013 144: 1508)
- PD-1 blockade
- Therapeutic vaccine
- Adoptive transfer of genetically modified T cells that express receptor directed against HBV surface proteins (Youse et al., Gastro 2013 144: 1508)
- Nanoparticles with HBV-CpG induce IFN-α thru TLR9 dependent pathway
- LTβR agonist (Ludhess Science 2014 Feb)

Summary

- Virological response from ART
 - HBV DNA
 - HBsAg
 - High level of adherence
- Decreased fibrosis progression
 - Not universal
- Substantial progress but risk is not zero. Need cure
- Several potential virological or immunological approaches
- Data on immune response during recovery from natural infection needed

Acknowledgements

Johns Hopkins University
Stein Falade
Eric Seaberg

UCSF Medical Center
Seun Falade
Jennifer Price

Multicenter AIDS Cohort Study Participants
ACTG
Leslie Siminoff
Kimberly Heflinbaugh

UCLA
Judy Currier

University of Colorado
Thomas Campbell

Funding
NIAID R01 AI071820, R01 AI060449, R01 CA083209, U01 AI38858

Johns Hopkins University Teaching Hospital, Jos, Nigeria
Ocho Igah
John Wada
Muza Muhammad

Northeastern University
Claudia Heath
Rob Murphy

HIVNET, Thailand
Anchalee Avihingsanon
Nat Nanizkiri

Royal Melbourne Hospital, Alfred Hospital, Melbourne
Sharon Lewin
Joe Sasadeusz
Jen Audsley
Megan O'Hare

University of New South Wales, Sydney
Gail Matthews
Greg Dore

Victorian Infectious Disease Research Laboratory, Melbourne
Peter Reav
Stephen Luciani
Margaret Lifshitz