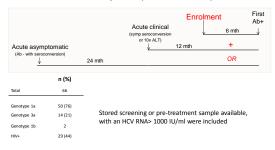

Naturally occurring dominant drug resistance mutations occur infrequently in the setting of recently acquired hepatitis C

<u>Silvana Gaudieri</u>, Tanya Applegate, Anne Plauzolles, Abha Chopra, Jason Grebely, Michaela Lucas, Margaret Hellard, Fabio Luciani, Greg Dore, Gail Matthews and the ATAHC cohort study group Direct-acting antiviral (DAA) drugs for HCV infection

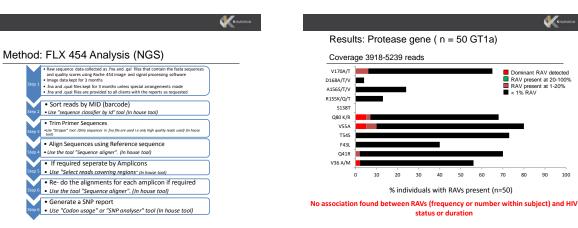

Pre-existing drug resistant variants

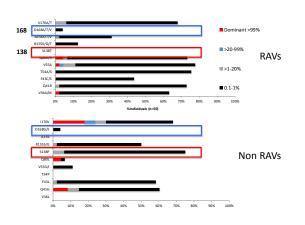
- Rapid replication and low fidelity of RNA-dependent polymerase results in HCV quasispecies (1 mutation per 10³-10⁵ bases per replication cycle)
- Frequency of strains change over time within host due to selective (pressures)
 replication efficiency; immune response (HLA, KIR, IFN); drugs
- Pre-existing DAA resistance associated variations (RAVs) identified in treatment naïve chronic-infected subjects (sanger-based technology) but not in the context of recently acquired hepatitis C infection
- Use of next-generation sequencing technology to determine frequency of RAVs in ATAHC cohort
 - circulating viruses in high-risk exposure populations
 - compensatory mutations
 - influence of non-drug selection pressures (immune response early in infection)

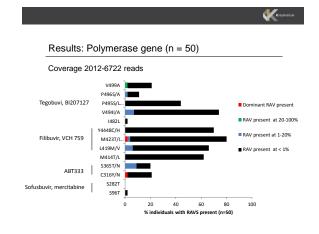
Kaybathak

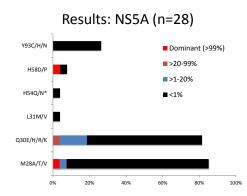
Subject characteristics

Australian Trial in Acute Hepatitis C (ATAHC, 2004-2007)

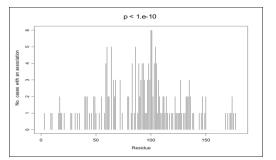

Pre-existing drug resistant variants (sanger)

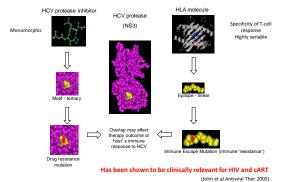

NS3 protease (wt/RAV)	1a			1b			3a		
		Chronic (n=205)	Acute (n=67)		Chronic (n=(54)	Acute (n=3)		Chronic (n=146)	Acute (n=49)
V36A/M	V/L/M	1.8	1.8	V	0	0	L	0	0
Q41R	Q/H	0.8	6.9	Q	0	0	Q	0	0
F43C/S	F	0	0	F	0	0	F	0	0
T54A/S	T/S	4.4	0	Т	0	0	T/S	0.9	2.1
V55A	V/A/I	6.9	6.8	V	0	0	V	0	0
Q80K/R	Q/K/L	18.1	10	Q	0	0	Q/K	0.8	0
S138T	S	0	0	S	0	0	S	0	0
R155K/Q/T	R/T	0.6	0	R	0	0	R	0	0
A156S/T/V	А	0	0	А	0	0	А	0	0
D168A/T/V	D/E	1.3	0	D	0	0	Q/R/K	1.7	2.1
V170A/T	I/V	5.8	13.8	V/I	9.4	0	I/V	6	6.4


Australian subjects Q80K Chronic 9.1% K (n=77) ATAHC 5.6% K (n=53)


Gaudieri et al Hepatology 2009 Applegate et al Antiviral Ther 2014

100





Limited evidence for compensatory mutations -NS3

For most DAA resistance associated sites no evidence of co-variation in more than one subject

Overlap between drug and immune pressure

Limited evidence of effect of immune pressure on frequency of RAVs - NS3

- HLA-A2-restricted epitope CINGVCWTV includes T54 and V55 - 3/8 HLA-A2 positive >1% RAV at V55 and 2/17 HLA-A2- have RAV >1% at V55
- HLA-A24-restricted epitope MYTNVDQDL includes Q80. - 1/4 HLA-A24+ dominant K and 2/13 HLA-A24- have different dominant amino acid
- HLA-A2-restricted epitope HAVGIFRAA includes 155 and 156 - 1/8 with HLA-A2 RAV 14.7% at 155. No change >1% within HLA-A2-

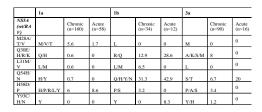
Limited evidence of effect of immune pressure on frequency of RAVs - NS5B

- HLA-A3-restricted epitope SLTPPHSAK includes 96 • – 0/4 HLA-A3+ but no RAVs >1%
- NS5B HLA-B27-restricted epitope ARMILMTHF includes 423 - 0/2 HLA-B27+ no RAV >1%, no RAV >1% for HLA-B27-
- NS5B HLA-A1-restricted epitope QLEQALDCEIY includes 448 - 0/9 HLA-A1+ with RAV >1%, no RAV >1% for HLA-A1-

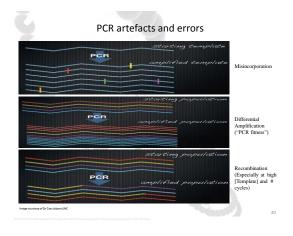
Summary

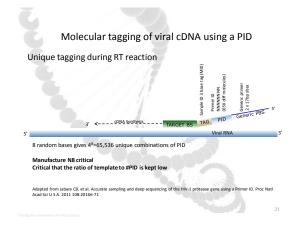
- · Next generation sequencing identifies low frequency RAVs in most individuals but typically <1%
 - Relevance of low frequency variants in DAA treated subjects unknown Presence of compensatory mutations will be investigated within a longitudinal cohort + boceprevir
- · No obvious association between RAV frequency or number with HIV status, duration of infection or adaptive immune response
- Future use of primer ID adaptations/3rd gen sequencing technologies can eliminate amplification bias

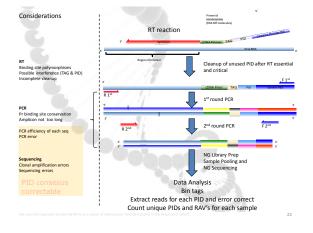
Acknowledgements



IIID Simon Mallal , Michaela Lucas, Anne Plauzolles, lan James, Linda Choo, Susan Herrmann, Abha Chopra, Don Cooper, Mark Watson


Kirby Institute


(ATAHC cohort)


Funding from the National Health and Medical Research Council

NS5B polymerase (wt/RAV)	la			1b			3a		
		Chronic (n=205)	Acute (n=64)		Chronic (n=54)	Acute (n=13)		Chronic (n=146)	Acute (n=50)
S96T	s	0	0	s	0	0	S	0	0
S282T	S/N	0.6	0	S/G	2.3	0	S/N	1.9	0
C316Y/N	с	0	0	C/N	11.6	38.5	с	0	0
S365T/N	s	0	0	s	0	0	s	0.8	0
M414T/L	М	0	0	м	0	0	м	0	0
L419M/V	L	0	0	L	0	0	L/I	0	2.3
M423T/I/V	M/I/ A/V	2.4	1.7	м	0	0	M/I/A/V	0	0
Y448C/H	Y	0	0	Y	0	0	Y	0	0
1482L	I	0	0	I	0	0	I	0	0
V494I/A	V/I	1.4	0	v	0	0	V/I	2.1	0
P495S/L/A/ T	Р	0	0	Р	0	0	Р	0	0
P496S/A	Р	0	0	Р	0	0	Р	0	0
V499A	A/T	5.6	0	V/T/A	30	66.7	A/T/V	2.2	2.5

