Herpes simplex vaccine development: Pipeline and possibilities

STI vaccines: Advancing the global agenda World STI & HIV Congress 2015 14 September 2015

Christine Johnston, MD, MPH University of Washington Fred Hutchinson Cancer Research Center

Acknowledgements

University of Washington Anna Wald David Koelle

World Health Organization Sami Gottlieb Nathalie Broutet

NIH Carolyn Deal

Disclosures

- U.S. National Institutes of Health
- · Research contracts:
- AiCuris
- Agenus
- GenoceaSanofi
- Vical

417 million people worldwide are infected with

19 million incident HSV-2 cases worldwide (2012)

Impact of genital herpes: The case for a vaccine

Leading cause of genital ulcer disease

311,600 years lived with disability (YLD) in 2013

Neonatal Herpes

Rare, high morbidity and mortality

Global Burden of Disease, Lancet 2015 6

Impact of HSV-2 on HIV epidemic

HSV-2 increases the risk of HIV-1 acquisition 2-3 fold

Genital ulcer disease increases risk of HIV-1 transmission

25%-50% of HIV infections attributable to HSV-2 in high prevalence settings

Modeling studies: a prophylactic vaccine that reduced HSV-2 acquisition by 75% would also decrease HIV incidence by 30-40% after 20 years

Genital HSV-1: a new epidemic

- Now most common cause of first episode genital herpes in women and MSM < 25 years old in USA, Australia, Europe
- May be due to decreasing HSV-1 seroprevalence First exposure to HSV-1 at initiation of sexual activity
- Estimated 140 million cases genital HSV-1 worldwide
- Ryder et al, STI 2009 Xu et al, JAMA 2006 Vision Pade 2006 Leading cause of neonatal herpes

HSV-2 prevention strategies

- Antiviral agents
 - Acyclovir, valacyclovir, famciclovir Suppressive: Decreases risk of transmission (50%) among HIV-negative, HSV-2 discordant heterosexual couples in North America
- Male circumcision
 - Decreased risk of HSV-2 acquisition in men Decreased risk of GUD in men and female partners
- Condoms
 - 30% decreased risk of transmission if used all of the time

These strategies are not highly efficacious, are not widely available, and are unlikely to interrupt HSV-2 epidemic

HSV Pathogenesis

Successful pathogen has evolved with us Many immune evasion strategies

Wide clinical spectrum of infection Most acquisition and transmission is asymptomatic

Genital HSV-2 shedding is frequent and often subclinical HSV is detected from genital tract on 20% of days in persons with symptomatic infection

Shedding measured by HSV PCR from genital secretions is a sensitive marker of clinical disease and risk of transmission

HSV-2 and genital tract inflammation

CD4+/CCR5+ and CXCR4+ cells and resident CD8+ T cells persist Day 3 for 24 weeks ulcer

HSV-2 infection associated with increase in stromal inflammation in foreskin in both HIV+/HIV- men Day 7

Oligoclonal, activated CD8+ tissue resident memory T cells persist at sites of genital herpes recurrences

These responses may be required to prevent HSV-2 infection ("Primepull" strategy in mice)

CD8

Vaccine strategies: Prophylactic vs. Therapeutic

	Prophylactic	Therapeutic
Target Population	High risk HSV-2 seronegative	HSV-2 seropositive
Goal	Prevent infection –or- Reduce severity of disease	Reduce severity of disease and risk of transmission
Preferred endpoint	Infection (seroconversion) Incidence of genital herpes	Genital shedding and recurrences

Adapted from Johnston et al, JCI 2011

Clinical Trials of Prophylactic Vaccines

- Over 20,000 participants enrolled in prophylactic vaccine trials
- Most prophylactic vaccines have targeted glycoproteins (gD, gB)
 - Subunit vaccines
 - Elicit neutralizing antibody

BD2t subunit vaccine with alum/MPL adjuvant

- Enrolled >8000 HSV seronegative women aged 18-30 in North America
 - Vaccine given at months 0, 1 and 6
 - Control vaccine: hepatitis A
- Primary endpoint: genital herpes disease
 - 70 cases of genital herpes observed
 - 32 HSV-1 and 38 HSV-2
- 286 seroconversions observed:
 179 HSV-1 and 108 HSV-2
 - Belshe et al, NEJM 2012

Belshe et al, JID 2014

16

18

Genital HSV 1 / 2 Disease Cumulative Incidence Per Protocol Efficacy Cohort Months 2-20

Vaccine efficacy as a function of ELISA titer: HSV-1

First evidence for correlate of protection against HSV-1

Immune Correlates

- Magnitude of CD4+ T cell responses to gD2 not associated with prevention of infection
- CD8+ T cells responses were not detected

Lessons from Herpevac

- Goal: Vaccine to prevent HSV-1 and HSV-2?
 - Timing of vaccine series
 - Use in HSV-1 seropositive persons
- Immune Correlates
 - Neutralizing antibody is a correlate of protection against HSV-1 infection * Is this relevant for HSV-2?
- Efficiency
 - Phase III trial required large number of participants due to low attack rate -Cohorts with higher incidence are needed
- Endpoints:
 - Infection vs. Disease

Beishe et al, JID 2014

17

Testing therapeutic HSV-2 vaccines: A new paradigm

- Endpoint: Shedding rate pre/post vaccine
- Participant is compared to themselves

Therapeutic vaccine example: GEN-003 Phase 1B results

Protein 1: ICP4.2		Treatment Group	N	Mean Baseline Rate	Mean Post- Treatment Rate	Mean Relative Change from Baseline	p-value
Adjuvant: Matrix M2		Placebo	28	11.8	13.2	12%	0.8
		GEN003 (10 µg)	31	11.5	11.3	-2%	0.75
		GEN003 (30 μg)	29	13.5	6.6	-51%	<0.001
		GEN003 (100 μg)	27	14.8	10.4	-30%	<0.001

Preliminary results: Phase II - 55% reduction in shedding (60µg + 75µg adjuvant dose)

Wald, ICAAC, 2013

HSV vaccines currently in clinical trials: The Pipeline

Vaccine	Platform	Adjuvant	Current Phase	Results
Admedus	DNA, gD2 codon optimized	Ubiquitin tagged	1B/II, prophylactic therapeutic	Elicited cellular responses in Phase 1
VCL-HB01	DNA gD2 +/- UL46	Vaxfectin	I/II POC therapeutic	Prelim results: Did no meet primary endpoint (decreased shedding)
GEN-003	Subunit gD2/ICP4	Matrix- M2	II, therapeutic	55% reduction in shedding
HerpV	32 35-mer peptides, complexed with heat shock protein	QS-21	II, therapeutic	15% reduction in shedding
HSV529	Replication deficient HSV-2 (deletion UL5/UL29)	NA	I, prophylactic therapeutic	Pending

HSV Vaccines: Preclinical Pipeline

Candidate Name/Identifier	Replication competent	Replication deficient	Other
HSV-2 0ANLS-ICP0	х		
gE2-deletion	х		
HF10	Х		
AD472 (HSV-2 mutated for g34.5, UL43.5, UL55- 56, US10-12)	x		
∆gD2		х	
CJ-2-gD2 HSV-2 gD dominant negative		х	
Prime-pull strategy			Х
Inactivated HSV-2 in MPL/alum			Х
HSV-1 glycoprotein B lentiviral vector			Х
Recombinant HSV-1 gB intranasal			Х
gD/gC/gE (Trivalent glycoprotein)			Х

22

HSV Vaccines: Cause for optimism

- Success of HPV and VZV vaccines
- Rich pipeline with novel candidates
 - Several platforms
 - Therapeutic vaccines rapidly moving forward
- New insights into importance of neutralizing antibody and cellular immune response
- Increased knowledge about lack of geographic diversity of virus
 - 0.4% maximum genetic divergence
- Extensive experience with optimizing clinical trials design (prophylactic and therapeutic)
 - Endpoints
 - Populations

Newman JVI 2015 23

HSV Vaccines: Challenges

- Need additional data about immune correlates and what responses need to be stimulated
- May be different for therapeutic and prophylactic vaccinesAvailable animal models do not mimic human
- disease or immune system
- Lack of standardized assays
- Efficiency: Use of smaller, iterative clinical trials
- Must continue to pursue prophylactic vaccines
- Manufacture of select vaccines
- Improved public-private partnership

Knipe, Vaccine 2014