

Western Bridge Engineers' Seminar

PRACTICAL SOLUTIONS TO BRIDGE ENGINEERING CHALLENGES

September 9–11, 2015 Peppermill Hotel Reno, Nevada

SESSION-5C

Honolulu Rail Transit Project: Drilled Shaft Design Considerations and Challenges

Presented By:

Ahilan Selladurai, P.E., S.E

Ahmad Abdel-Karim, Ph.D., P.E

- Project Introduction
- Shaft Configurations / Details
- Design Criteria / Process
- Shaft Construction
- Post-Grouting (Sac RT Project)
- Conclusions

Project Introduction

- Shaft Configurations / Details
- Design Criteria / Process
- Construction
- Post-Grouting (Sac RT Project)
- > Conclusions

PROJECT INTRODUCTION

AECOM

Western

Engineers' Seminar

Bridge

GENERAL SPAN / PIER LAYOUT

PIER SUMMARY

Pier Type	Airport	City Center
	(Pier 423-Pier 636)	(Pier 637-Pier 808)
Typical Pier	163	107
C-Pier	15	19
Hammerhead Stations	11	20
Hammerhead Transition Piers	0	2
Straddle Station Piers	7	8
Straddle Piers	18	13
C - Straddles	0	3
Total Piers	214	172
Total Shafts	239	196

Western Bridge Engineers' Seminar

GEOTECHNICAL SUMMARY

29 30

686

736

759L 759R

785 786 808L 808R

687

737

																		Туре	Date	No. of			
																				Piers	1		
																	\geq	G-1	30-Sep-13	20	439		
													2					G-2	17-Oct-13	20	471		
																		G-3	25-Oct-13	20	508		
		No. of															_	G-4	29-Oct-13	10	525		
Туре	Date	Piers	1	2	3	4	5	6	1				11	12	13	14	15	G-5	24-Nov-13	21	584	2	7 28
G-1 G-2 G-3	30-Sep-13 17-Oct-13 25-Oct-13	20 20 20	43	440	441 473 513	442 474 562	443	444	٨	35			452 489 573	454 494 574	45 45 58	436	460	G-6	27-Jan-14	20	423		
G-4 G-5	29-Oct-13 24-Nov-13	10 21	525 584	533 585	534	508 587	540 58		-	-in	gS		500	593L	593R	594L	594F	G-7	18-Apr-14	20	485		
G-6 G-7 G-8	27-Jan-14 18-Apr-14 30-Man-14	20 20 20	42:	486 518	424R 487L 519	425 487R 520	4		BO		597	498	456 503 545	458	459 506 547	464 507 548	476 509 549	G-8	30-May-14	20	517		
G-9 G-9A	13-Jun-14 14-Jul-13	18	514	15	516 543	528	529	530	V	532	535	539_L	533_R	555	575_L	599	600	G-9	13-Jun-14	18	514		
G-10 G-11	17-Oct-14 24-Oct-14	20	63i 658	619	640 660	641 60	64 662	643 663	644 664	645 665	646 666	647 667	648 668	649 669	650 670	651	652 672	G-9A	14-Jul-13	3	541	61	84 685
G-12 G-13 G-14	4-Nov-14 7-Nov-14	20 30 30	46 68 73	689 739L	690 739R	524 691 740	632 741	693 743	694 744L	695 744R	696 745	700	701 747	703 748	704	720 750L	721 750F	G-10	17-Oct-14	20	638	75	34 735 57 758
G-15 G-16	7-Nov-14 14-Nov-14	20 25	42 614	428 615	423 616	430 617	431 618	432 619L	433L 619R	433R 620	434L 621	434R 622	435L 623	435R 624	436 625	437 626	608 627	G-11	24-Oct-14	30	658		
G-17 G-18 G-19	5-Dec-14 8-Dec-14 25-Dec-14	30 30 1	760	760R 788	761 789	762	763 792	764 793	765 794	766 795	767 797	768L 798	768R 799L	769 799R	770 800L	771 800R	772 801	G-12	31-Oct-14	20	463		33 784)7L 807R
G-20 G-21	10-Feb-15 10-Feb-15	3	465 697	466 697R	467	633	702	705	706	707	708	709	710L	710R	711	712	715	G-13	4-Nov-14	30	688		
G-22	10-Feb-15	4.95	716	717								-					112	G-14	7-Nov-14	30	738		812123
																		G-15	7-Nov-14	20	427		
																		G-16	14-Nov-14	25	614		
																		G-17	5-Dec-14	30	760L		
																		G-18	8-Dec-14	30	787		
																		G-19	25-Dec-14	1	637		
																		G-20	10-Feb-15	3	465		

Session-5C: Honolulu Rail Transit Project: Drilled Shaft Design Considerations and Challenges

G-21

G-22

10-Feb-15

10-Feb-15

TOTAL:

23

2

435

697L

716

OUTLINE

Project Introduction

- Shaft Configurations / Details
- Design Criteria / Process
- Construction
- Post-Grouting (Sac RT Project)
- > Conclusions

Western Bridge Engineers' Seminar

Western Bridge Engineers' Seminar

STEPPED SHAFT REINFORCEMENT

AECOM

OUTLINE

Project Introduction

- Shaft Configurations / Details
- Design Criteria / Process
- Construction
- Post-Grouting (Sac RT Project)
- > Conclusions

DESIGN CRITERIA

Criteria	Limit State
Axial-Flexural-Shear Capacity	Strength and Extreme Limit States
Lateral Stability	Strength and Extreme Limit States
Buckling Capacity	Strength and Extreme Limit States
Lateral Deflections	 Service Limit State- 1" (excluding wind effects)
	 Extreme (Seismic) Limit State- 18" at Top of Rail (Seismic)

SEISMIC PARAMETERS

Project Subsurface Profile

SEISMIC PARAMETERS

FLEXIBLE DESIGN PROCESS TO ACCOMMODATE CHANGES:

Layout

Profile

Utilities

Roadways

Geotechnical

Parametric Studies

Seismic Analysis

- Setting Up Automation Procedure
 - Large Scale Project
 - Near <u>400</u> Piers with Varying Configurations/Design Data
 - Time Consuming
 - Response Spectrum Analysis (RSA)
 - 12-Span Finite Element Modeling (FEM)
 - Possible Re-work Due To Changes In
 - Pier Geometry
 - Soil Data

AECOM

SEISMIC ANALYSIS 3-STEP AUTOMATION Pier Models (Templates)

AECOM

Straddle Bent - Template

Straddle Bent - Modified

Modifications Include:

- Horizontal Curve
- Vertical Profile
- Pier Offsets / Properties

Assembling Pier Models

Assembling Pier Models

Assembling Pier Models

Assembled RSA Model

Assembled RSA Model

			Pick Which Pier to					
Model	for Eacl	n Pier #	Analyze _/					
		A						
		Model	Begin	End	# of	¥		
	Model #	Name	Pier	Pier	Spans	Run		
	1	M422	416	428	12	Х	1	
	2	M423	417	429	12		0	
	3	M424	418	430	12		0	
	4	M425	419	431	12	Х	1	
	5	M426	420	432	12		0	
	6	M427	421	433	12		0	
	7	M428	422	434	12	х	1	
	8	M429	423	435	12		0	
	9	M430	424	436	12		0	
	10	M431	425	437	12	Х	1	
	11	M432	426	438	12		0	
	12	M433	427	439	12		0	
	13	M434	428	440	12		0	
	14	M435	429	441	12		0	
	15	M436	430	442	12		0	
	16	M437	431	443	12		0	

AECOM

AECOM

Step 1: Generate Pier Models

- Creates Pier Templates.
- Modify Templates to Match Actual Alignment & Profile and Pier Properties.

Step 2: Assemble Model

• "Splice" Pier Models

Step 3: Run All Assembled Models

- Runs Assembled Models From Step 2
- Read and Summarize Results

			Pick Which Pier to					
Model 1	for Eacl	n Pier #	Analyze 🖌					
		Υ			/	/		
		À						
		Model	Begin	End	# of	¥		
	Model #	Name	Pier	Pier	Spans	Run		
	1	M422	416	428	12	Х	1	
	2	M423	417	429	12		0	
	3	M424	418	430	12		0	
	4	M425	419	431	12	Х	1	
	5	M426	420	432	12		0	
	6	M427	421	433	12		0	
	7	M428	422	434	12	Х	1	
	8	M429	423	435	12		0	
	9	M430	424	436	12		0	
	10	M431	425	437	12	Х	1	
	11	M432	426	438	12		0	
	12	M433	427	439	12		0	
	13	M434	428	440	12		0	
	14	M435	429	441	12		0	
	15	M436	430	442	12		0	
	16	M437	431	443	12		0	

AECOM

Step 1: Generate Pier Models

- Creates Pier Templates.
- Modify Templates to Match Actual Alignment & Profile and Pier Properties.

Step 2: Assemble Model

• "Splice" Pier Models

Step 3: Run All Assembled Models

• Runs Assembled Models From Step 2

Read and Summarize Results

				Top of Rail	Top of Column	Bottom of Column	Top of Column		Bottom	Bottom Col.	
Pier #	Pier type	Col Height	Col Diameter	Max Disp.	Max Disp.	Max Disp.	Max Shear	Max Moment	Max Shear	Max Moment	Axial
422	Transition Pier	29.05	6								
423	Typical	30.66	6.5	11.51	11.06	3.65	495.64	3189.90	524.33	15900.25	-1400.547
424_L	Straddle Bent	29.08	6	11.51	9.41	3.09	337.50	4179.25	351.35	10586.23	-1659.885
424_R					9.05	2.95	314.21	4355.38	327.48	10243.27	-1535.425
425	C-Pier	31.17	6.5	21.21	16.40	9.36	655.47	16987.05	700.76	26728.65	-1739.524
426	Typical	36.61	6.5	17.87	14.57	4.44	545.11	4799.96	583.71	16930.53	-1363.617
427	Typical	35.06	6.5	17.23	13.86	4.14	525.12	4045.77	563.66	17433.87	-1267.738
428	Typical	33.17	6.5	16.04	12.67	3.82	497.14	2561.16	529.84	17248.10	-1255.023

AECOM

Step 1: Generate Pier Models

- Creates Pier Templates.
- Modify Templates to Match Actual Alignment & Profile and Pier Properties.

Step 2: Assemble Model

• "Splice" Pier Models

OTHER DESIGN PROCEDURES WERE ALSO AUTOMATED IN A SIMILAR FASHION.

Step 3: Run All Assembled Models

- Runs Assembled Models From Step 2
- Read and Summarize Results

				Top of Rail	Top of Column	Bottom of Column	Top of Column		Bottom	Bottom Col.	
Pier #	Pier type	Col Height	Col Diameter	Max Disp.	Max Disp.	Max Disp.	Max Shear	Max Moment	Max Shear	Max Moment	Axial
422	Transition Pier	29.05	6								
423	Typical	30.66	6.5	11.51	11.06	3.65	495.64	3189.90	524.33	15900.25	-1400.547
424_L	Straddle Bent	29.08	6	11.51	9.41	3.09	337.50	4179.25	351.35	10586.23	-1659.885
424_R					9.05	2.95	314.21	4355.38	327.48	10243.27	-1535.425
425	C-Pier	31.17	6.5	21.21	16.40	9.36	655.47	16987.05	700.76	26728.65	-1739.524
426	Typical	36.61	6.5	17.87	14.57	4.44	545.11	4799.96	583.71	16930.53	-1363.617
427	Typical	35.06	6.5	17.23	13.86	4.14	525.12	4045.77	563.66	17433.87	-1267.738
428	Typical	33.17	6.5	16.04	12.67	3.82	497.14	2561.16	529.84	17248.10	-1255.023

OUTLINE

- > Project Introduction
- Shaft Configurations / Details
- Design Criteria / Process
- Construction
- Post-Grouting (Sac RT Project)
- > Conclusions

Typical Shaft Construction Step 1

Typical Shaft Construction Step 2

Typical Shaft Construction

Typical Shaft Construction Step 4

Typical Shaft Construction Step 5

Western Bridge Engineers' Seminar

CONSTRUCTION PHOTOS

AECOM

FINAL INSPECTION PHOTOS

AECOM

OUTLINE

> Project Introduction

- Shaft Configurations / Details
- Design Criteria / Process
- Construction
- Post-Grouting (Sac RT Project)
- > Conclusions

SHAFT CAPACITY

TIP RESISTANCE

Side Resistance

Tip Resistance Typically Ignored-

- Hard to Estimate
- Conservative

Tip Resistance

Western Bridge Engineers' Seminar

TIP RESISTANCE

ZERO Tip Resistance:

- Could be Very Conservative
- Actual SF Unknown
- Is SF 5 or 6 or > 6 OK?
- A Good Design is Economical

Tip Resistance

TIP RESISTANCE

Significant Potential Savings w/:

- In-Situ Testing
- Post-Grouting
- Better Construction Practices

Tip Resistance

Western Bridge Engineers' Seminar

PILE CAPACITY SCENARIOS -NOT ENOUGH CAPACITY

Top Soil

Sand/Rock

Soft Layer

Competent Soil/Rock

PILE CAPACITY SCENARIOS -ZERO TIP EXTEND SHAFT TO COMPETENT SOIL

Top Soil

Sand/Rock

Soft Layer

Competent Soil/Rock

POST-GROUTING SCENARIOS -PILE IS SIGNIFICANTLY LONGER

Top Soil

Sand/Rock

Soft Layer

Competent Soil/Rock

PILE CAPACITY SCENARIOS -W/ TIP-RESISTANCE OR IN-SITU TESTING

Top Soil

Sand/Rock

Soft Layer

Competent Soil/Rock

PILE CAPACITY SCENARIOS -SHORTER PILE

Top Soil

Sand/Rock

Competent Soil/Rock

IN-SITU TESTING: PRESSURE METER

IN-SITU TESTING: PRESSURE METER

IN-SITU TESTING: PRESSURE METER

POST-GROUTING

POST-GROUTING

AECOM

POST-GROUTING BENEFITS: SAC RT PROJECT

Construction Cost: \$22 Million

Post-Grout Savings: \$2 Million!

CONCLUSION

HRTP Project Shafts were each designed with

pier-specific geotechnical boring data.

>VBA Excel Macros proved very effective for

Designing a Large Number of Shafts

Accommodating Many Changes Quickly

Enhancing Quality Control

SacRT: In-Situ Testing / Post-Grouting Saved \$\$

Session-8B: Significant Changes for Design and Construction Cost of Earth Retaining Structures Caused By Recent AASHTO LRFD Design Criteria

ACKNOWLEDGEMENTS

State of Hawaii
Department of Transportation

AECOM

AECOM

Brian Dodson, PE, Project Manager

Wally Jordan, PE, Leader , Complex Bridges

Neil Harris, PE, Project Engineer

AECOM Engineers & CAD Technicians

Tom Barnard, PE, Sac RT Project Manager

QUESTIONS & ANSWERS

Western

Bridge Engineers' Seminar

Session-8B: Significant Changes for Design and Construction Cost of Earth Retaining Structures Caused By Recent AASHTO LRFD Design Criteria