HIGH CHLAMYDIA TREATMENT FAILURE RATES IN MEN WHO HAVE SEX WITH MEN

Smith KS1, Guy R1, Danielewski JA2, Tabrizi SN1,2,3,4, Chen M5,6, Kaldor JM1, Hocking JS7 on behalf of REACT investigators

1The Kirby Institute, UNSW Australia, Sydney, Australia
2Department of Microbiology and Infectious Diseases, Royal Women's Hospital, Melbourne, Australia
3Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Australia
4Murdoch Children's Research Institute, Melbourne, Australia
5Melbourne Sexual Health Centre, Melbourne, Australia
6Central Clinical School, Monash University, Melbourne, Australia
7Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia

Most frequently reported STI in most developed countries
• Notification rates have been increasing steadily
• ~86,000 chlamydia diagnoses in Australia in 2014 (Kirby Institute 2014)
• Greatest burden of infection among 15-24 year olds
• Chlamydia prevalence high in men who have sex with men (MSM) (Vodstrcil, BMC Infect Dis 2011; Annan, STI 2009)
• Reinfections common (20-30%) (Walker, PLoS ONE 2012; Harte, STI 2011)
 – Increased risk of HIV (Wasserheit, STI 1999; Bernstein, JAIDS 2010)

Chlamydia infections and reinfections

Most repeat infections
– Due to reinfection from the same or a new partner
– Less commonly treatment failure (Batteiger, J Infect Dis. 2010)

Increasing concern about azithromycin treatment failure

Reported treatment failure rates:
– 5-14% in genital chlamydia infection;
– 6-21% in asymptomatic rectal infection (Dukers-Muijrers, PLoS ONE 2013)

Is treatment failure an issue?

Aims:
• To compare repeat chlamydia infection rates between MSM and heterosexual men and women
• To compare treatment failure rates between MSM and heterosexual men and women

Study design:
• Prospective cohort in the context of a RCT (Smith, Am J Prev Med 2015)

Study sites:
• Melbourne and Sydney Sexual Health Centres

Participants:
• 600 people: 200 MSM, 200 women, 200 heterosexual men
• 16 years or above
• Diagnosed with chlamydia and treated with azithromycin

Cohort follow-up procedures

• Chlamydia retesting recommended at 3 months
• SMS reminder sent at 3 months
• Randomised to specimen collection at home or clinic
• Testing conducted by three diagnostic laboratories
• Positive specimens stored for further testing at reference laboratory

Survey
• SMS reminder at 4 months
• Demographics
• Treatment of the participant and their sexual partner(s)
• Sexual behaviour since initial diagnosis:
 o Sexual intercourse
 o Condom use - always, inconsistent
 o Partner type - new partner(s), existing partner(s)
Genovar and MLST testing

Quantitative real-time PCR (qPCR) assay
- Identify chlamydia positive samples
- Differentiate into 3 distinct phylogenetic clades based on the *ompA* gene:
 - B group (comprising B/Ba, D, E, L1, and L2)
 - C group (comprising A, C, H, I, J, K, and L3)
 - Intermediate (I) group (comprising F and G)

Multilocus sequence typing (MLST)
- Differentiate between identical genovars from the same individual

MLST analysis over 5 regions of the chlamydia genome
- *hctB*, *CT682-pbpB*, *CT144*, *CT172*, *CT058*

Classification of repeat positive cases

Repeat positive cases were differentiated according to an algorithm using:
- Sexual behaviour data
- Chlamydia genotyping

New infection

Persistent infection

Possible treatment failure

Probable reinfection

NA = not available
Results: Sample characteristics at baseline n=290

<table>
<thead>
<tr>
<th>Variable</th>
<th>Heterosexual men and women</th>
<th>MSM</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>189</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td>Age (median) (IQR)</td>
<td>26 (22-29)</td>
<td>30 (27-37)</td>
<td><0.01</td>
</tr>
<tr>
<td>Born in Australia %</td>
<td>40.8</td>
<td>58.8</td>
<td><0.01</td>
</tr>
<tr>
<td>Used condoms consistently in last 3 months %</td>
<td>6.3</td>
<td>37.6</td>
<td><0.01</td>
</tr>
<tr>
<td>>5 partners in last 3 months %</td>
<td>7.4</td>
<td>39.6</td>
<td><0.01</td>
</tr>
<tr>
<td>Anal/urethral symptoms %</td>
<td>48.7</td>
<td>43.6</td>
<td>0.41</td>
</tr>
<tr>
<td>Previous chlamydia diagnosis %</td>
<td>NA</td>
<td>18.8</td>
<td>0.01</td>
</tr>
<tr>
<td>Site of infection %</td>
<td>Rectal = 57.4</td>
<td>Urethral = 35.6</td>
<td>Both = 6.9</td>
</tr>
</tbody>
</table>

Genovar and MLST results

Of those with repeat infection (n=43):
- Paired genovar data available for 31 individuals
- 4 (13%) had a different genovar
- 27 (87%) had the same genovar
 - Of these 27, MLST further identified 2 new infections

Limitations

- Small sample
- Self-reported sexual behaviour
- Possible misclassifications in those who reported always using condoms (Jin, STI 2007)
- Not all specimens were available for genotyping
- If an individual has two episodes of chlamydia infection with the same genovar and the same MLST profile, we cannot differentiate between reinfection and treatment failure
Conclusions

- Repeat positivity was highest among MSM
- Different circulating genovars among MSM – consistent with literature (Herrmann, JCM 2015)
- Applying genotyping and behavioural data allowed us to further classify repeat infections
- Treatment failure appears to be more common in MSM with rectal chlamydia
- High repeat infection rates, particularly among MSM, highlight the importance of retesting around 3 months following treatment

Acknowledgements

- Participants and staff from Melbourne and Sydney Sexual Health Centres especially study nurses: Samantha Blake and Karen Worthington.
- Jennifer Danielewski, Sepehr Tabrizi and Sam Phillips, Department of Microbiology and Infectious Diseases, Royal Women’s Hospital, Melbourne
- Muhammad Shahid Jamil, Kirby Institute, UNSW Australia
- Glenda Fehler, Melbourne Sexual Health Centre
- Christiana Willenborg, Virology Research Laboratory, SEALS Pathology
- Gillian Phillips and Grace Chang, VCS Pathology
- Supervisors: Rebecca Guy, Jane Hocking and John Kaldor

Kirsty Smith was supported by an ISSTDR scholarship to attend the conference.

This study was funded by a NHMRC STI Program Grant