Amy Quinton
University of Queensland
System analysis and simulation modeling for Australia’s low carbon energy transition

Amy Quinton and Dr Anthony Halog

World Resources Forum, 1-3 June 2015, Sydney
Outline

- Introduction
- Approach and findings
 - Transition theory analysis of Australia’s electricity system
 - System dynamics analysis
- Strategies to support low carbon transition
- Conclusions
Overview

Difference between historical and contemporary transitions (Papachristos, 2014).
Transition theory

Fig. 2. A dynamic multi-level perspective on system innovations. Adapted from Geels (2004).
Australian electricity production socio-technical system

Quinton & Halog 2014
Barriers to change?

- Infrastructure & institutional structures
- Uncertainty
- Vested Interests
- Consumer attitudes
- Cost
- Storage (?)

Quinton & Halog 2014
System thinking and modeling methodology

Research Scope

1. **Problem structuring**
 - 1. Identify problems or issues of concern
 - 2. Collect preliminary information and data

2. **Causal loop modelling**
 - 1. Identify main variables
 - 2. Prepare behaviour over time graphs
 - 3. Develop causal loop diagram
 - 4. Analyse loop behavior over time and identify loop types
 - 5. Identify system archetypes
 - 6. Identify key leverage points
 - 7. Develop intervention strategies

3. **Dynamic modelling**
 - 1. Develop a systems map or rich picture
 - 2. Define variable types and construct stock-flow diagrams
 - 3. Collect detailed information and data
 - 4. Develop a simulation model
 - 5. Simulate steady state/stability conditions
 - 6. Reproduce reference mode behavior (base case)
 - 7. Validate the model
 - 8. Perform sensitivity analysis
 - 9. Design and analyse policies
 - 10. Develop and test strategies

Research Extension

4. **Scenario planning and modelling**
 - 1. Plan general scope of scenarios and modeling
 - 2. Identify key drivers of change and keynote uncertainties
 - 3. Construct forced learning scenarios
 - 4. Simulate scenarios with the model
 - 5. Evaluate robustness of the policies and strategies

5. **Model-based interactive learning tool**
 - 1. Communicate results and insights of proposed intervention to stakeholders
 - 2. Develop a microworld and learning lab based on the simulation model
 - 3. Use learning lab to examine mental modes and facilitate learning
Causal loop diagram of Australia’s socio-technical electricity system including emerging changes and uncertainties (simplified)

Quinton & Halog 2014
System archetypes - eroding goals

Quinton & Halog 2014
Leverage and Strategies

• Sustainability at an operational level – reassessing priorities
• Addressing procrastination
• Addressing eroding goals
• Promoting a national conversation
• Electricity’s role in the broader low carbon transition?
Amy Quinton
Associate Consultant
Ndevr Environmental
Lev 2, 27-31 King St
Melbourne 3000
amy.quinton@ndevr.com.au

Dr Anthony Halog
Lecturer in Industrial Environmental Management / LCA Professional
School of Geography, Planning and Environmental Management
The University of Queensland
Brisbane Qld 4072 Australia
a.halog@uq.edu.au
References

• ClimateWorks, 2014. *How Australia can thrive in a low carbon world: Pathways to prosperity in 2050*