

# Trends and predictors of recent HIV testing over 22 years among a clinic sample of men who have sex with men in South Australia

Bin Li 1,2,\*, Peng Bi 1, Alison Ward 2, Charlotte Bell 2, Christopher K Fairley 3,4

- \*Corresponding author: email: Bin.Li@sa.gov.au, telephone no: +61 8 82222503
- 1 School of Public Health, The University of Adelaide, Adelaide, SA 5000, Australia
- 2 South Australia Specialist Sexual Health, Infectious Disease Unit, Royal Adelaide Hospital, Adelaide SA 5000, Australia
- 3 Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne Vic 3004, Australia
- 4 Melbourne Sexual Health Centre, Alfred Health, Melbourne Vic 3053, Australia

#### Introduction

Increasing the frequency of HIV testing is crucial for effective HIV prevention and care. The Sexually Transmitted Infections in Gay Men Action group (STIGMA) recommended testing for HIV at least once a year for all MSM and up to four times a year for MSM at highest risk including any unprotected anal sex and more than 10 sexual partners in the previous six months.

#### Aim

Our aim was to report the data from South Australia to complement the data from other centres on HIV testing in MSM. This will then provide national data to assess treatment as prevention (Tasp) as a goal of the current national HIV strategy, which aims to 'work towards achieving the virtual elimination of HIV transmission in Australia by 2020'; and to 'increase the proportion of people living with HIV on treatments with an undetectable viral load'.

## Methods

We used computerised medical records of MSM who attended the SASSH at their first visit between 1994 and 2015, to determine whether HIV testing had changed among MSM. First HIV tests in each calendar year and return tests within 12 months were analysed. Factors associated with recent HIV testing were also examined.

# Statistical Analysis

- 1. We used a chi square test to determine if there was a change in HIV testing over time. Crude and adjusted Odds Ratio (OR and aOR) and 95% confidence intervals (95% CI) for HIV
- 2. Univariable and multivariable logistic regression analyses were performed to assess the factors associated with the recent HIV
- 3. Trends in testing and returning for HIV testing within 12 months were examined using nonparametric test for trend to examine trends by calendar year.

# Results

Figure 1: Proportion of the newly registered MSM who reported ever tested for HIV, recent HIV testing and current HIV testing at their first visit to the South Australia Specialist Sexual Health (SASSH), January 1994 to December 2015

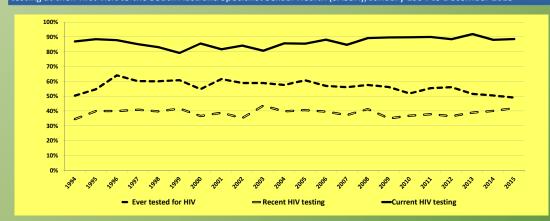



Table 1: Description of HIV tests among the newly registered MSM at their first visit to the South Australia Specialist Sexual Health (SASSH), January

| Year | MSM | MSM who reported ever tested for HIV |       |               | MSM who reported recent HIV testing |       |               | MSM who have had current HIV testing |       |               |
|------|-----|--------------------------------------|-------|---------------|-------------------------------------|-------|---------------|--------------------------------------|-------|---------------|
|      | n†  | n†                                   | %*    | Median<br>age | n†                                  | %**   | Median<br>age | n†                                   | %***  | Median<br>age |
| 1994 | 232 | 117                                  | 50.4% | 29.6          | 80                                  | 34.5% | 26.0          | 202                                  | 87.1% | 28.1          |
| 1995 | 245 | 134                                  | 54.7% | 28.2          | 98                                  | 40.0% | 27.5          | 217                                  | 88.6% | 27.5          |
| 1996 | 240 | 154                                  | 64.2% | 28.1          | 96                                  | 40.0% | 25.6          | 211                                  | 87.9% | 25.9          |
| 1997 | 264 | 159                                  | 60.2% | 30.0          | 108                                 | 40.9% | 28.9          | 225                                  | 85.2% | 28.5          |
| 1998 | 231 | 139                                  | 60.2% | 29.7          | 92                                  | 39.8% | 29.1          | 192                                  | 83.1% | 28.0          |
| 1999 | 197 | 120                                  | 60.9% | 34.0          | 82                                  | 41.6% | 30.5          | 156                                  | 79.2% | 29.0          |
| 2000 | 237 | 130                                  | 54.9% | 31.7          | 87                                  | 36.7% | 29.0          | 203                                  | 85.7% | 28.5          |
| 2001 | 219 | 135                                  | 61.6% | 31.6          | 85                                  | 38.8% | 30.2          | 179                                  | 81.7% | 30.1          |
| 2002 | 241 | 142                                  | 58.9% | 32.1          | 85                                  | 35.3% | 27.5          | 203                                  | 84.2% | 29.3          |
| 2003 | 280 | 165                                  | 58.9% | 31.0          | 122                                 | 43.6% | 27.9          | 226                                  | 80.7% | 30.0          |
| 2004 | 274 | 158                                  | 57.7% | 32.0          | 109                                 | 39.8% | 28.0          | 235                                  | 85.8% | 29.1          |
| 2005 | 275 | 167                                  | 60.7% | 32.0          | 112                                 | 40.7% | 28.5          | 235                                  | 85.5% | 26.7          |
| 2006 | 356 | 203                                  | 57.0% | 29.4          | 141                                 | 39.6% | 28.0          | 314                                  | 88.2% | 26.2          |
| 2007 | 321 | 180                                  | 56.1% | 31.3          | 120                                 | 37.4% | 29.3          | 272                                  | 84.7% | 27.7          |
| 2008 | 300 | 173                                  | 57.7% | 31.3          | 124                                 | 41.3% | 29.5          | 268                                  | 89.3% | 27.4          |
| 2009 | 322 | 181                                  | 56.2% | 30.5          | 113                                 | 35.1% | 30.6          | 289                                  | 89.8% | 27.0          |
| 2010 | 401 | 208                                  | 51.9% | 30.2          | 148                                 | 36.9% | 29.4          | 360                                  | 89.8% | 27.1          |
| 2011 | 510 | 283                                  | 55.5% | 29.4          | 193                                 | 37.8% | 28.0          | 459                                  | 90.0% | 26.4          |
| 2012 | 435 | 244                                  | 56.1% | 29.5          | 159                                 | 36.6% | 27.7          | 385                                  | 88.5% | 26.4          |
| 2013 | 473 | 244                                  | 51.6% | 29.0          | 184                                 | 38.9% | 27.2          | 435                                  | 92.0% | 26.5          |
| 2014 | 580 | 293                                  | 50.5% | 27.9          | 233                                 | 40.2% | 26.5          | 511                                  | 88.1% | 25.1          |
| 2015 | 581 | 285                                  | 49.1% | 29.2          | 244                                 | 42.0% | 26.6          | 515                                  | 88.6% | 25.9          |
|      |     |                                      |       |               | 008 Becant                          |       |               | oths hafore atte                     |       |               |

# Conclusions

**HIV testing rate among MSM** attending the SASSH was suboptimal. New approaches are needed to increase the uptake and early detection of HIV infection among the high priority MSM population.

|                        | HIV test in the |              | No HIV test in  |              | OR   | 95% CI    | aOR  | 95% CI    |
|------------------------|-----------------|--------------|-----------------|--------------|------|-----------|------|-----------|
| Factors                | last 12mths     |              | the last 12mths |              |      |           |      |           |
|                        | N               | %            | n               | %            | 4.00 | 0.00.4.04 |      |           |
| Year of testing        | 2815            |              | 4389            |              | 1.00 | 0.99-1.01 |      |           |
| Age (years)            |                 |              |                 |              |      |           |      |           |
| <20                    | 243             | 8.6          | 602<br>2828     | 13.7<br>64.4 | 1.00 | 4 52 2 40 | 1.00 | 1.26-1.91 |
| 20-40<br>>40           | 2047<br>525     | 72.7<br>18.7 | 2828<br>959     | 21.9         | 1.79 | 1.53-2.10 | 1.55 | 1.26-1.91 |
| Education 240          | 525             | 18.7         | 959             | 21.9         | 1.36 | 1.13-1.63 | 1.48 | 1.14-1.91 |
| Tertiary/University or |                 |              |                 |              |      |           |      |           |
| higher                 | 996             | 61.9         | 1381            | 56.1         | 1.28 | 1.12-1.45 |      | 0.97-1.28 |
| High school or less    | 612             | 38.1         | 1082            | 43.9         | 1.00 |           | 1.00 |           |
| Race                   |                 |              |                 |              |      |           |      |           |
| Indigenous Australian  | 47              | 1.67         | 46              | 1.1          | 1.67 | 1.11-2.53 | 2.40 | 1.36-4.23 |
| Asian                  | 305             | 10.9         | 381             | 8.7          | 1.31 | 1.12-1.54 | 1.40 | 1.14-1.71 |
| African                | 124             | 4.4          | 121             | 2.8          | 1.68 | 1.30-2.17 | 1.75 | 1.29-2.37 |
| Caucasian              | 2336            | 83.1         | 3837            | 87.5         | 1.00 |           | 1.00 |           |
| Marital status         |                 |              |                 |              |      |           |      |           |
| Married/Defacto        | 191             | 6.8          | 324             | 7.4          | 0.75 | 0.65-0.87 | 0.88 | 0.73-1.07 |
| Divorced, separated    |                 |              |                 |              |      |           |      |           |
| or widowed             | 343             | 12.2         | 676             | 15.5         | 0.88 | 0.73-1.05 | 0.94 | 0.71-1.24 |
| Never married          | 2268            | 80.9         | 3368            | 77.1         | 1.00 |           | 1.00 |           |
| No. Partners in the    |                 |              |                 |              |      |           |      |           |
| past 3 months          |                 |              |                 |              |      |           |      |           |
| 2-4                    | 1092            | 41.5         | 1864            | 45.4         | 0.98 | 0.88-1.10 | 1.09 | 0.94-1.27 |
| >=5                    | 612             | 23.3         | 695             | 16.9         | 1.47 | 1.29-1.69 | 1.37 | 1.13-1.65 |
| 1                      | 925             | 35.2         | 1549            | 37.7         | 1.00 |           | 1.00 |           |
| Sex contacts in the    |                 |              |                 |              |      |           |      |           |
| past 12 mths           |                 |              |                 |              |      |           |      |           |
| Interstate             | 644             | 23.5         | 723             | 17.1         | 1.61 | 1.42-1.82 | 1.49 | 1.25-1.76 |
| overseas               | 435             | 15.9         | 514             | 12.1         | 1.53 | 1.33-1.76 | 1.50 | 1.25-1.79 |
| SA only                | 1661            | 60.6         | 3001            | 70.8         | 1.00 |           | 1.00 |           |
| Injecting drug use     |                 |              |                 |              |      |           |      |           |
| Yes                    | 234             | 8.3          | 241             | 5.5          | 1.56 | 1.29-1.88 | 1.71 | 1.25-2.35 |
| No                     | 2581            | 91.7         | 4148            | 94.5         | 1.00 |           | 1.00 |           |

#### References

- 1. Beyrer C, Baral SD, van Griensven F, Goodreau SM, Chariyalertsak S, Wirtz AL, et al. Globa epidemiology of HIV infection in men who have sex with men. Lancet (London, England). 2012 Jul 28;380(9839):367-77.

  2. Sullivan PS, Carballo-Dieguez A, Coates T, Goodreau SM, McGowan I, Sanders EJ, et al. Successes and
- challenges of HIV prevention in men who have sex with men. Lancet (London, England). 2012 Jul 8;380(9839):388-99.
- 3. Department of Health and Ageing Australian Government. Seventh National HIV Strategy 2014-2017.
- The Kirby Institute. HIV, viral hepatitis and sexually transmissible infections in Australia Annual Surveillance Report 2015. UNSW Australia, Sydney NSW 2052: The Kirby Institute, 2015.
   Guy RJ, Prestage GP, Grulich A, Holt M, Conway DP, Jamil MS, et al. Potential public health benefits of
- HIV testing occurring at home in Australia. The Medical journal of Australia. 2015 Jun 1;202(10):529-31.

  6. Tan WS, Chow EP, Fairley CK, Chen MY, Bradshaw CS, Read TR. Sensitivity of HIV rapid tests compared with fourth-generation enzyme immunoassays or HIV RNA tests. AIDS (London, England). 2016 Jul with fourth-genera 31:30(12):1951-60.