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ABSTRACT
This study aims to describe the influence of periodic flow-

pulsations on heat transfer of laminar free surface impinging
jets ( Re = 1000, Pr = 7). Fully resolved two-dimensional nu-
merical simulations were carried out in which flow-pulsation
was achieved by periodically altering the velocity of the jet at
the nozzle exit with an amplitude of 50% of the time averaged
value. The Strouhal number of this pulsation was varied be-
tween St = 0.002−0.2. For higher pulsation frequencies, linked
to higher Strouhal numbers, the time averaged Nusselt number in
the stagnation region shows an increase compared to the Nusselt
number of a non-pulsating jet, while it decreases for lower pulsa-
tion frequencies. The physical effects causing these two regimes
are described analytically and it is shown that the resulting corre-
lations can deliver lower and upper limits for the deviation from
the Nusselt number distribution of non pulsating jets.

INTRODUCTION
Impinging jets show, due to the high transport rates at the

target wall, a high potential for cooling and drying processes and
are already broadly implemented in such applications [1][2].
The heat and mass transfer characteristics of jets have been
investigated in various publications. A overview over the heat
transfer in laminar jets was presented by Kneer et al. [3] while
Jambunathan et al.[4] and more recently Dewan et al. [5] give
and overview over the research regarding turbulent submerged
jets and Ma et al. [6] summarises the research on laminar and
turbulent free surface jets.

The affect of unsteady flow behaviour on the heat transfer
of submerged laminar jets has previously been investigated by
the authors of this work, see Rohlfs et al. [7] [8] as well as Liu
and Sullivan [9], Chung and Luo [10] and Hofmann [11]. A
common finding of these investigations was that in submerged
jets, large vortices which are induced at the outer edge of the
jet can substantially affect the local instantaneous and time
averaged heat transfer coefficients.

NOMENCLATURE

A [−] pulsation amplitude
D [m] jet diameter
ν [m2/s] kinematic viscosity of the jets fluid
ω [1/s] pulsation frequency
Ṗ [kg ·m/s2] momentum flux of the jet
q′′ [W/m2] heat flux
r [m] radial coordinate
∆r [m] radial cell measure
ρ [kg/m3] density of the jets fluid
t [s] physical time
∆t [s] pulsation length of the inlet velocity
θ [K] heat flux
u [m/s] velocity
x [m] axial coordinate
∆x [m] axial cell measure

Dimensionless Numbers
Nu h ·D/λ Nusselt number
Pr ν ·ρ ·D/λ Prandtl number of the jets fluid
Re uin,A ·D/ν Reynolds number
St ω ·D/2π ·uin,A Strouhal number

Subscripts
A area averaged value
in inlet value
N values of non pulsating jets
P values of pulsating jets
w value on the target wall

The two-phase nature of free jets prevents the formation of
such vortices within the jet. Nevertheless Zumbrunnen and Aziz
[12] and Sheriff and Zumbrunnen [13] found that flow pulsation
or intermittency can have an impact on the local heat transfer in
planar turbulent impinging jets. While intermittent jets as well
as a square-pulse-excitation showed an increase in heat transfer
by a factor from 30% up to 100%, a sinusoidal pulsation led
to a decrease up to 17%, depending on the pulsation frequency.
Sabelberg et al. [14] investigated various methods to passively
induce pulsation in free surface jets.

NUMERICAL PROCEDURE
The simulations are carried out using a modified version of

the interFoam-solver from the OpenFOAM-1.7-library [17].
It utilizes the Volume-Of-Fluid method (VOF) to model the



two-phase nature of the fluid flow and additionally incorporates
the thermal energy transport equation in order to simulate the
heat transport inside the fluid. A more detailed documentation
of the numerical methods can be found in Rohlfs et al. [18].

In order to decrease the numerical costs of this investigation,
it was taken advantage of the symmetric nature of the circular
laminar impinging flow. This way, the numerical domain can
be reduced to a two-dimensional radialy-symmetrical numerical
mesh. The size of the numerical grid-cells is constant in radial
direction with a resolution of ∆r/D = 5 × 10−3. In axial
direction the cell size is refined in five steps from a maximum
size of ∆x/D ≈ 9.5× 10−3 in the outer flow to a minimum size
∆x/D≈ 3×10−4 close to the target wall. The grid independence
of the results for such a numerical grid has been shown by the
authors in Rohlfs et al. [18].

At the inlet of the numerical domain a fixed velocity boundary
condition was applied, the values and distribution of which cor-
respond to a parabolic velocity profile as it develops in laminar
pipe flows. As the incoming jet is pulsating in a sinusoidal man-
ner, the local velocity not only depends on the radial position but
also on time, according to the equation

uin(r, t) = 2 ·uin,A ·
(

1− 4 · r2

D2

)
· (1+A · sin(ω · t)) (1)

where A = u′in/uin,A is the relative pulsation amplitude and uin,A
is the time and area averaged jet velocity calculated from the time
averaged volume flux V̇ according to

uin,A =
4 ·V̇
πD2 =

4
πD2∆t

∫
∆t

0
V̇ (t)dt . (2)

The term ∆t = 2π/ω denotes the sinus-pulsation length of the
velocity at the inlet. The average Reynolds number of the jet
is defined using this average velocity u and the jet diameter D
according to

Re =
uin,A ·D

ν
. (3)

In addition to the time averaged Reynolds number Re, the instan-
taneous Reynolds number Re(t) which depends on the time de-
pendent area averaged inlet velocity uin,A(t) can be defined ana-
logue to Equation 2 and Equation 3

Re(t) =
uin,A(t) ·D

ν
(4)

with the instantaneous area averaged inlet velocity

uin,A(t) = uin,A · (1+A · sin(ω · t)) . (5)

The pulsation frequency is defined in non-dimensional form
through the Strouhal number

St =
f ·D
uin,A

=
ω ·D

2π ·uin,A
. (6)

In the following, jets with a comparably high Strouhal number
and hence a high pulsation frequency will be referred to as fast
pulsating jets, while jets with a low Strouhal number will be
referred to as slowly pulsating jets.

At the solid wall a no-slip boundary condition is applied,
whilst at the outlet a inlet-outlet condition is applied which cou-
ples an inward flow with the pressure gradient while for an out-
going flow a zero-gradient condition is applied. For the pressure
field a fixed value is set as the boundary condition at the outlet
patch. At all other patches a zero-gradient is applied. The alpha
field which describes the volume fraction of the two phases in
the VOF-method has a zero-gradient condition at the outlet and
the wall and a fixed value at the inlet.

The heat transfer can be described in a non-dimensional form
through the Nusselt number

Nu(r, t) =
h(r, t) ·D

λ
. (7)

Since the heat transfer coefficient h(r, t) heavily depends on the
non-stationary flow state, the Nusselt number is not only a func-
tion of the radial position but also a function of time. As this
work aims to investigate the effect of pulsating flow on the av-
erage heat transfer, the time averaged Nusselt number is defined
according to the definition suggested by Mladin and Zumbrun-
nen [19] as

Nu(r) =
∫

∆t
0 Nu(r, t) ·θw(r, t)dt∫

∆t
0 θw(r, t)dt

=
D ·q′′w

λ ·θw(r)
=

D ·h(r)
λ

(8)

where the local wall temperature θw(r, t) = Tw(r, t) − Tin is
used as scaling factor. Since in this investigation, a Neumann
boundary condition is applied for the temperature field at the
wall, the heat flux q′′w is spatially and temporarily constant.

RESULTS
Figure 1 shows the radial distribution of the time averaged

Nusselt number for pulsating jets with different Strouhal num-
bers and a Prandtl number of Pr = 7. The black lines represent
the reference distribution which would occur for jets without
pulsation while the coloured lines are the time averaged results
for pulsating jets. All pulsating jets have the same average
Reynolds number Re = 1000 and relative pulsation amplitude
A = 0.5 but vary in pulsation frequency, with Strouhal numbers



ranging from St = 0.02 to St = 0.2. The pulsation ampli-
tude leads to instantaneous Reynolds numbers ranging from
500 ≤ Re(t) ≤ 1500. Hence the dashed black lines show the
Nusselt number distribution of jets with such Reynolds numbers.
The time averaged Nusslet number shows a distinct dependency
on the Strouhal number, with higher Strouhal numbers leading
to higher Nusselt numbers within the stagnation region. For
the jet with the highest Strouhal number the heat transfer is
increased compared to the non-pulsating jet, while in the other
cases the heat transfer is impaired.
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Figure 1: Time averaged Nusselt number distribution over ra-
dial position, for non-pulsating (black lines) and pulsating jets
(coloured lines) with a parabolic inlet-velocity-profile.

Figure 2 and Figure 3 provide an explanation for the sig-
nificant differences in the Nusselt number distributions for jets
with high and low Strouhal numbers. Both graphs show Nusselt
number distributions at constant time intervals within one
pulsation period for a fast pulsating jet (Figure 3, St = 0.2) and
a slowly pulsating jet (Figure 2, St = 0.002). In addition, three
non-pulsating jets with the corresponding average and bounding
Reynolds numbers (Remin = 500, Re = 1000, Remax = 1500) of
the pulsating jet are presented (black lines).

In both cases the variation of the Nusselt number at different
time steps is strongest close to the stagnation point and vanishes
for higher radial positions. While the slow pulsating jet shows a
large spread between the Nusselt numbers at different time steps,
the Nusselt numbers of the fast pulsating vary less and only in
the stagnation region (r/D ≤ 0.5). In the case of the slowly
pulsating jet they reach the upper and lower bounds set by the
bounding distributions of the non pulsating jets (Remin = 500
and Remax = 1500).

Figure 4 compares the time dependency of the stagnation
point Nusselt number (Nu(r = 0, t)) with the wall shear stress
at the radial position r = 1×D for the two pulsating-jet cases
shown in Figure 2 and Figure 3. It shows that even though the
pulsation amplitude of the incoming jet is the same in both cases
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Figure 2: Nusselt number distribution over radial position, for
non-pulsating (black lines), instantaneous Nusselt number distri-
butions for a pulsating jet St=0.002 (coloured lines).
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Figure 3: Nusselt number distribution over radial position, for
non-pulsating (black lines), instantaneous Nusselt number distri-
butions for a pulsating jet St=0.2 (coloured lines).

the higher deviations in the Nusselt number in the case of the
slower pulsating jet are related to higher deviations of the wall
shear stress.

This indicates, that at higher pulsation frequencies, the shear
stresses in the boundary layer close to the wall dampens the ef-
fect of the fluctuating velocity of the flow further away from the
wall. The momentum of the fluid close to the wall can not follow
the rapid changes in the outer flow and the velocities fluctuate
less. Hence the Nusselt number shows smaller variations over
time.

Concerning the heat transfer, two counteracting effects of the
fluctuating velocity can be identified. In accordance with Hof-
mann [11] the decrease in the time averaged Nusselt number in
the case of slower pulsating jets can be explained through the
dependency of the Nusselt number from the Reynolds number
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Figure 4: Variation of the stagnation point Nusselt number (solid
lines) and the wall shear stress τw(r = 1×D, t) (dashed lines)
each normalized by their time averaged value for a fast pulsating
jet St = 0.2 (red) and a slowly pulsating jet St = 0.02 (blue).

which is generally assumed to be

Nu∼ Ren (9)

where a typical value for laminar impinging jets is n= 0.5. In the
case of a pulsating jet, the Reynolds number is not constant but
nevertheless the correlation should still apply. Compared to the
Reynolds number of the non pulsating jet ReN , the instantaneous
Reynolds number of the pulsating jet ReP as defined in equation
Equation 4 fluctuates according to

ReP(t)
ReN

= 1+A · sin(ωt) . (10)

The fraction of the time averaged local Nusselt number of the
pulsating jet NuP(r) (time averaging according to Equation 8)
and the local Nusselt number of the non pulsating jet NuN(r) can
be rewritten as

NuP(r)
NuN(r)

=
D ·q′′w ·∆t

NuN(r) ·λ
∫

∆t
0 θw,P(r, t)dt

(11)

= ∆t
(∫

∆t

0

NuN(r)
NuP(r, t)

dt
)−1

. (12)

Neglecting other additional Reynolds number dependencies of
the local Nusselt number (such as the correlation correcting
nozzle-to-wall distances as suggested by Rohlfs et al. [18], in
this study H/D ·Re = 4×10−3), the fraction of the instantaneous
Nusselt numbers in Equation 12 can be defined as

NuN(r)
NuP(r, t)

=

(
ReN

ReP(t)

)n

= (1+A · sin(ωt))−n (13)

yielding a scaling law for the instantaneous Nusselt number of a
pulsating jet

NuP(r)
NuN(r)

= ∆t
(∫

∆t

0
(1+A · sin(ωt))−n dt

)−1

. (14)

This equation indicates that the decrease in Nusselt number only
depends on the relative pulsation amplitude A but is independent
from the pulsation frequency ω. Assuming a scaling exponent
of n = 0.5, the integral can be evaluated for a relative pulsation
amplitude A = 0.5 to be

NuP(r)
NuN(r)

= 0.948 . (15)

For a slowly pulsating jet, the flow in the boundary layer
and hence the local instantaneous heat transfer show a quasi
stationary behaviour defined by the instantaneous Reynolds
number of the impinging jet. Hence the time averaged Nusselt
number can be expected to be the time average of the fluctuating
instantaneous Nusselt numbers as derived in Equation 10-15.

A contrary effect is caused by the increased time averaged
momentum of the pulsating jet compared to the non pulsating
jet. The fraction of the time averaged momentum flux of the
pulsating jet ṖP defined as

ṖP =
∫

∆t

0

(∫ D/2

0
2π ·ρ · r · (uin(r, t))

2 dr
)

dt (16)

and a non pulsating jet of the same average Reynolds number ṖN
is

ṖP

ṖN
=

1
∆t

∫
∆t

0
(1+A · sin(ω · t))2 dt . (17)

Hence, a non pulsating ”reference” jet with the same time av-
eraged momentum as a pulsating jet has an increased Reynolds
number ReN,re f

ReN,re f

ReN
=

(
1
∆t

∫
∆t

0
(1+A · sin(ω · t))2 dt

)0.5

(18)

and also an increased local Nusselt number (similar to Equa-
tion 13)

NuN,re f (r)
NuN(r)

=

(
1
∆t

∫
∆t

0
(1+A · sin(ω · t))2 dt

)0.5·n
(19)



which can be further reduced to

NuN,re f (r)
NuN(r)

=

(
1+

A2

2

)0.5·n
. (20)

For a pulsation amplitude of A = 0.5 and a scaling exponent n =
0.5 Equation 20 yields

NuN,re f (r)
NuN(r)

=
NuP(r)
NuN(r)

= 1.030 . (21)

Similar to Equation 14, Equation 20 shows no dependency of
the result on the pulsation frequency.

For fast pulsating jets, the flow in the boundary layer and
hence the heat transfer shows a minimal fluctuation over time
(see Figure 3 and Figure 4). Accordingly the shear stresses in-
side the boundary layer are more affected by the time averaged
inertia of the outer jet. Hence the velocity profiles as well as the
local heat transfer is more similar to a non pulsating jet with an
increased Reynolds number according to Equation 18. This leads
to an increase in local Nusselt number as calculated in Equa-
tion 21.

It should also be noted that the increase in momentum leads
to an increase in time averaged pumping power that is required
to achieve such a pulsating jet. The increase in required power
is equal to the value of Equation 17 which yields an increase of
≈ 12.5%.
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Figure 5: Fraction of the local Nusselt number distribution of
pulsating jets 0.002≤ St ≤ 0.2 over the Nusselt distribution of a
non pulsating jet with the same time averaged Reynolds number;
Re = 1000, Pr = 7. The dashed lines show the bounding values
calculated according to Equation 15 and Equation 21.

Figure 5 compares the local time averaged Nusselt number
distribution of pulsating jets of varying pulsation frequencies
(0.002≤ St ≤ 0.2) with the local Nusselt number distribution of

a non pulsating jet of the same time averaged Reynolds number
Re = 1000, Pr = 7. Additionally the bounding values for slowly
pulsating jets according to Equation 15 and a fast pulsating jet
according to Equation 21 are featured (dashed lines).

Similar to the graph in Figure 1, a distinct trend is present
within the stagnation region where the local time averaged Nus-
selt number depends on the pulsation frequency of the impinging
jet. The featured bounding values derived in Equation 15 and
Equation 21 seem to be valid, although the Nusselt number dis-
tribution of the two slowest pulsating jets run slightly below the
lower bound. This could be explained by the simple approach to
the Reynolds number dependency of the Nusselt number. More
complex approaches or more exact values for the scaling expo-
nent n might yield an even better result. Nevertheless it can be
concluded that for lower pulsation frequencies local time aver-
aged Nusselt numbers seem to tend towards a lower bound which
is close to the predicted value according to Equation 15.

For higher Strouhal numbers but the bounding value derived
in Equation 21 holds up as well. Though it should be noted
that the changes between the local distribution for the higher
Strouhal numbers is still well observable. At even higher pul-
sation frequencies jet breakup occurs, rendering the analytical
derivations invalid. The shift between the two counteracting
regimes occurs for Strouhal numbers between St = 0.02 and
St = 0.2, which is a common value of interest in oscillating
flows. Outside the stagnation region (r/D > 1) the effect of the
pulsation number seems to diminish or even invert. It can be
deduced that at this positions other effects, such as surface wave
formation play a significant role.

It should be noted that the analytical derivations in this study
can only be applied for fluid-flows with Prandtl numbers Pr >
1 where the thermal boundary layer is smaller than the viscous
boundary layer. For lower Prandtl numbers, the flow outside the
viscous boundary player plays a stronger role in the heat transfer
and has to be considered as well.

CONCLUSION
The influence of flow pulsation on the heat transfer in lam-

inar free-surface impinging jets was shown and two dominant
regimes one for slowly and one for fast pulsating jets were iden-
tified. For slowly pulsating jets (St ≤ 0.02) the heat transfer in the
stagnation region, represented by the time averaged Nusselt num-
ber (see Equation 8), is reduced by about 6% compared to val-
ues of a non pulsating jet with the same time averaged Reynolds
number (see Equation 3). An analytical solution was presented
(see Equation 15) to estimate this value which predicts the reduc-
tion to be 5.2%. For fast pulsating jets (St ≥ 0.2) the heat transfer
is increased by 1−3% which was also estimated by a second an-
alytical solution (see Equation 21) which predicts an increase by
3%. The shift between both regimes occurs at Strouhal numbers
between 0.02≤ St ≤ 0.2.
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