Foraminifera: a tool for elucidating past and recent climate change in marine Arctic Canada

Introduction

Over the past five decades, polar regions such as the Canadian Arctic Archipelago (CAA) have experienced pronounced changes associated with recent climate warming, such as sea ice decline (ACIA, 2005; IPCC, 2007). Such relatively recent and open-ended environmental shifts have motivated researchers regarding past climate variability to understand how polar marine environments responded to previous high-magnitude changes such as glacial to interglacial transitions. MacEwan University’s RAPIDe (Researching Arctic Palaeoceanographic Indicators of Deglacial Environments) program seeks to apply multiple sedimentological, stratigraphic, and micropalaeontological approaches to elucidate the timing and style of marine-based deglaciation and subsequent oceanographic evolution through the CAA.

Foraminifera as a proxy

Foraminifera are classified as a amoeboid protists and can be used as an indirect measure of environmental conditions. This study focuses on using foraminifera as a proxy to discern marine systems and glacialiation patterns over the Holocene epoch. This approach takes advantage of the fact that abundance and type of foraminifera are characteristic of particular environments (Murray, 2000). Characterizing modern foraminiferal assemblages plays an important role in further interpretations in that, in order to understand past environments we must first be able to interpret the contemporary habitats of these forams. Uncovering present species ecosystem relationships and environmental tolerances allows for more accurate interpretations of palaeoenvironments. Although forams have been used previously as a proxy in the CAA, this study provides a more robust baseline for palaeo-interpretations based upon a comprehensive investigation of modern CAA foraminiferal distributions. Foraminiferid specimens will also be essential for compilation of species for taxonomic purposes, including generating an atlas of foraminiferal species by Anna Pienkowska and Alix Cage.

Sample collection

Samples used for this research were acquired during ArctNet expeditions in the CAA aboard the CCGS Amundsen, during summer 2016 and 17. Samples consist of piston, gravity and box cores, >37 inclusive samples from 2016 and ~90 from 2017. Samples are retained at MacEwan University as well as the Geological Survey of Canada (GSC). Sample sites were selected based on ArctNet cruise plans and logistical opportunity.

Methods

Preparation of samples

For micropalaeontological analyses samples were wet-weighed (10 cc), then oven dried at ~65°C, and finally dry weighed.

Picking & identifying foraminifera

A total of ~300 benthic and planktonic foraminifera per sample, are being manually picked, whenever possible. As the microfossils are picked, two major groups were differentiated: planktonic foraminifera and benthic foraminifera. The latter was further separated into two sub-categories: agglutinated and calcareous specimens and the former into individual morphotypes. Identification guidelines included Eynaud (2011), El baii Altuna (In review), and direction form Alix Cage (Keely University).

Stable Isotope Analysis

Stable isotope analysis (δ18O and δ13C) currently being undertaken using laser ablation ICP mass spectrometry at Cardiff University (Wales, UK). The results will be useful in:

1. Determining water temperature
2. Calculating oceanic salinity
3. Evaluating ice conditions

Desired outcomes

• To map modern species distributions in seabed sediments in an Atlantic-Arctic transect (Baffin Bay to NWP); ~100 box core samples; recovered in 2016 and 2017
• To link modern distributions to measured environmental parameters (e.g., sea ice duration)
• To obtain biochemical chemical (isotopes of C & O and C18O2 tracing temperature, ecosystem productivity) from selected species (~90 samples)
• To combine the information from assays (species-environment relationships; isotopic values; carbon dates) to directly interpret past environments

Benthic FORAMINIFERA

Agglutinated

Calcareous

Acknowledgments

We would like to thank Robbie Bennett, Kate Jarrett, Ned King, Brian McClain and Jenna Higgins from the Geological Survey of Canada-Atlantic for providing assistance in the lab and interpretations. Jean Carlos Monteiro Serrano and Pascal Riou (EOA/RSMED) provided coring assistance aboard the CCGS Amundsen. Naima El Baii Altuna and Frédérique Eynaud (Université de Bordeaux, France) provided help with sample processing and data interpretation.

Funding Sources

ArctNet, MacEwan University, Systematics Association Research Fund. AJF acknowledges the receipt of an NSERC Discovery Grant and funding from the London Society of London, Systematics Association, and Association of Commonwealth Universities. MFAF was funded by ArctNet.

References


Fig. 1) A Gateway from the Atlantic to Pacific ocean via the Northwest passage (ogilvienunav.gov.jklakobn, 2012); Fig. 1) B Depicts the extent of the CAA.

Fig. 2) Map of Arctic Canada showing the approximate current study for the RAPIDe project as investigated during ArctNet cruises in 2016 and 2017, specifically highlighted in lighter blue.

Fig. 3) Planktonic foraminifera, Nodosariopsida pachyderma sena Darling et al. (2006) Morphotype 1, 1 respectively (Eynaud, 2011). Light Microscopy images.

Fig. 4) Example species of benthic foraminifera. From left to right: Odonnella subglobosa; O. subglobosa var. globosa (Murray, 1988), Paroger sp., Caprosa gracilis; Bonabeau P. (with help from identification from Alix Cage (Keely University)).