Sedimentological, physical, geochemical and magnetic properties of sediments from the Canadian Arctic: sedimentary processes since the last millenium

Sarah Letaief1, Guillaume St-Onge2, Jean-Carlos Montero-Serrano1

1 Institut des sciences de la mer de Rimouski (ISMER) and GÉOTOP
2 Canada Research Chair in Marine Geology

Background

- In the context of global warming, understanding the sediment, dynamic variations during changing climatic conditions is crucial. This information will be of point of comparison to better document Arctic climate variability.

- 50 box cores were sampled in the Canadian Arctic in 2016 and 2017 on board the CCGS Amundsen

- Box cores are ~40 cm in length

Objectives

- Compare the sedimentological, physical and magnetic properties of sediments during the last millenium.

- Identify the factors affecting the origin of detrital material, sediment transport and sediment dynamics in the Canadian Arctic during Holocene climatic periods (Little Ice Age, Medieval Warm Period & recent).

Methodology

1. 210Pb to determine recent sedimentation rates
2. Physical & Geochemical analyses
 - Radiography (Geisert ACT digital x-ray system)
 - XRF, XRD (Geisert Silica and Minerals detectors)
 - SEM (Scanning electron microscope)
 - Cryogenic magnetometer (Bartington MS2)
 - Magnetic analyses
 - Alternating Gradient Magnetometer (Bartington AGM200)
3. 210Pb measurements from the first dated core (Coronation Gulf) illustrate an average sedimentation rate of 0.17 cm/yr:
 - The base of the core would be close to 270 years.
 - The core thus probably records the Little Ice Age.

Surface sediments

- Grain size
 - MEAN
 - SOERT: Sorting
 - PCA: Principal Component Analysis

- Geochemistry
 - Cluster @ Depth:
 - PCA 1 @ Depth:

- Magnetic properties
 - Pseudo Vs.

Chronology

- All the parameters illustrate a West-East trend with a different sediment dynamics:
 - West Province: dominated by detrital sediment supplies from numerous rivers (e.g., Mackenzie plume, Coppermine, Ellef, Back and Hayes rivers)
 - by coastal erosion of dolomite cliffs and glacial tills cropping out on the Banks Island Shelf
 - East province: influenced by sediment-laden sea ice and icebergs
 - Important carbonate inputs from the coastal erosion of Ordovician-Silurian carbonate-bearing rocks cropping out in the Victoria and the Prince of Wales Islands

Conclusions

- We sincerely thank the captain, crew and scientific participants of the 2016 and 2017 ArcticNet expeditions onboard the CCGS Amundsen. The authors are also thankful to Marie-Pier St-Onge and Quentin Beauséjour for all their help in the laboratory, for data analysis and processing at ISMER.

- Financial support for this research project was provided by ArcticNet and the Natural Sciences and Engineering Research Council of Canada (NSERC) through Discovery and Ship Time grants to Guillaume St-Onge and Jean-Carlos Montero-Serrano.

Acknowledgements:

References: